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Research into the mechanisms and manifestations of solid tumor
vascularization was launched more than 50 years ago with the proposition
and experimental demonstrations that angiogenesis is instrumental

for tumor growth and was, therefore, a promising therapeutic target.

The biological knowledge and therapeutic insights forthcoming have
beenremarkable, punctuated by new concepts, many of which were not
foreseeninthe early decades. This article presents a perspective on tumor
vascularization and its therapeutic targeting but does not portray a historical
timeline. Rather, we highlight eight conceptual milestones, integrating initial
discoveries and recent progress and posing open questions for the future.

The vascular system is composed of blood vessels (BVs) made of
tube-forming endothelial cells (ECs) and periendothelial support cells.
Like organs, tumors establish a vascular network that supplies oxygen
and nutrients and satisfies the metabolic needs of proliferating cancer
cells. Tumor vascularization is achieved primarily through angiogen-
esis, the process involving the sprouting and growth of new BVs from
a preexisting vascular network. Owing to incessant and deregulated
proangiogenic signaling, tumor BVs (TBVs) frequently manifesta cha-
oticarchitecture characterized by excessive branching, abundant dila-
tations, constrictions and dead ends, discontinuous EC lining, aberrant
basement membranes and reduced pericyte coverage. These features
are associated with defective BV maturation and functionality, leading
toincoherent perfusion, fluid leakage and microhemorrhaging'. How-
ever, increasing evidence indicates that tumors can also vascularize
through angiogenesis-independent mechanisms, most prominently
by co-option of the normal tissue vasculature through perivascular
cancer cell growth. In these cases, the TBVs display a more coherent
and organized architecture’.

This Perspective focuses on the mechanisms of tumor vascu-
larization and its therapeutic targeting, conceived in the form of eight
conceptual milestones (Fig.1). The related lymphatic vascular system
that drains fluid from tissues and tumors through immune-sensing
lymph nodes is beyond our scope and has been reviewed elsewhere’.

Associating angiogenesis with tumor progression
Tumors have long been known to vascularize by attracting and remod-
eling BVs*®. The use of transparent windows in the early twentieth

century revealed that implanting neoplastic tissue in experimental
animals triggered more robust proliferative vascular reactions than
nonneoplastic tissue. Moreover, tumor grafts failing to induce such
vascular responses could not grow®’. This angiogenic response demon-
strably involved hitherto unidentified, diffusible proangiogenic factors
released by the tumor®.In1971, it was postulated that drugs capable of
inhibiting tumor vascularization would provide therapeutic benefit™,
spawning the modern field of angiogenesis. In subsequent decades,
it was experimentally validated that inhibiting angiogenic signal-
ing indeed impairs the vascularization and growth of experimental
tumors™* and provides clinical benefit to patients with cancer” ™.
However, despite early predictions of curative potential®, clinical out-
comes typically only involved delayed time to progression, with modest
overall survival benefits in selected cancer types'™s,

The induction of tumor angiogenesis (the ‘angiogenic switch’)
was found to represent a discrete and requisite step in the multistage
development of certain tumor types” 2, leading to its incorporation
as a qualitatively distinct hallmark of cancer®. The occurrence of a
discrete angiogenic switch was initially demonstrated in RIP1-Tag2 (rat
insulin promoter 1-T antigen 2) mice, agenetically engineered mouse
model (GEMM) of pancreatic neuroendocrine tumorigenesis®. Inthese
mice, a subset of oncogene-induced hyperplasticislets progress into
‘angiogenicislets’and then solid tumors with an activated vasculature
characterized by EC proliferation, capillary dilatation and sprout-
ing, and frequent blood islands consequent to microhemorrhaging®.
Afraction of the neoplastic islets were found capable of inducing the
migration, proliferation and tube formation of cocultured ECs ex vivo,

'Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne,
Switzerland. 2Agora Cancer Research Center, Lausanne, Switzerland. *Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland. *Ludwig Institute for

Cancer Research, Lausanne Branch, Lausanne, Switzerland.

e-mail: michele.depalma@epfl.ch; douglas.hanahan@epfl.ch

Nature Cancer | Volume 5 | June 2024 | 827-843

827


http://www.nature.com/natcancer
https://doi.org/10.1038/s43018-024-00780-7
http://orcid.org/0000-0001-9128-5459
http://orcid.org/0000-0002-0883-5251
http://crossmark.crossref.org/dialog/?doi=10.1038/s43018-024-00780-7&domain=pdf
mailto:michele.depalma@epfl.ch
mailto:douglas.hanahan@epfl.ch

Perspective

https://doi.org/10.1038/s43018-024-00780-7

1 Associating angiogenesis
with tumor progression
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2 VEGFA signaling and its role
in tumor angiogenesis

5 Phenotypic diversity of EC states
and tumor vascularization

6 Development of angiogenesis
inhibitors for cancer therapy

il

Fig.1| Eight conceptual milestones for tumor vascularizationand its
therapeutic targeting. (1) Associating angiogenesis with tumor progression;
(2) VEGFA signaling and its role in tumor angiogenesis; (3) additional signaling
pathways regulating tumor angiogenesis; (4) involvement of accessory

4 Involvement of accessory cells
in tumor angiogenesis

3 Additional signaling pathways
regulating tumor angiogenesis

8 Harnessing vascular-immune
crosstalk for cancer therapy

7 Intrinsic and adaptive resistance
to antiangiogenic therapy

cellsin tumor angiogenesis; (5) phenotypic diversity of EC states and tumor
vascularization; (6) development of angiogenesis inhibitors for cancer
therapy; (7) intrinsic and adaptive resistance to antiangiogenic therapy;
and (8) harnessing vascular-immune crosstalk for cancer therapy.

indicative of a distinctive proangiogenic state”. Further evidence
was provided in other cancer types* . For example, activated BVs
subtending increasingly aberrant epithelia were evident in the non-
invasive stages of ductal carcinoma in situ in human breast cancer®
and intraepithelial dysplasia in human cervical cancer”. Induction
of angiogenesis may thus precede and allow the malignant progres-
sion of different tumor types®* 2. The angiogenic switch was initially
thought to depend on the de novo synthesis of proangiogenic factors”.
However, a‘balance hypothesis’ has since been proposed, suggesting
that abiochemical equilibrium maintains BVsina quiescent state. This
equilibrium s disrupted during the angiogenic switch consequent to
increased expression or bioavailability of angiogenesisinducers and/
orreduced expression or bioavailability of angiogenesis inhibitors*'.
Perhaps counterintuitively, microvessel density in some human
cancers is lower than in corresponding normal tissue®®. Both reduced
oxygen consumption by cancer cells and their tolerance of hypoxic
conditions may allow for increased intervessel distance in tumors
compared to their normal tissue counterparts. Various parameters
may influence microvessel density in tumors, including the mode of
vascularization (angiogenesis versus co-option), the metabolic and
proliferative phenotypes of cancer cells, the diversity and expression
level of angiogenic regulators, and the biophysical properties of the
tumor-associated stroma (for example, stiffness and interstitial pres-
sure), all of which vary according to tumor type, anatomical site and
stage of malignant progression®. As aresult, microvessel density does
not reliably indicate the dependence of a tumor on angiogenesis?.

Vascular endothelial growth factor A signaling
andits role in tumor angiogenesis

The discovery of ‘tumor angiogenesis factors’ spanned several dec-
ades, culminatingin theidentification of signaling molecules capable
of inducing angiogenesis’. The prototype was a secreted protein ini-
tially identified both asavascular permeability factor and asavascular
endothelial growth factor (VEGF)****, eventually named VEGFA. Its
discovery led to the identification of transmembrane receptors for
VEGFA expressed on blood ECs and other cell types®***. VEGFA proved
to be induced in tumors®**¥, and functional validation of its involve-
mentin tumor angiogenesis came from VEGFA neutralization studies
in tumor-bearing mice" and genetic knockouts of the Vegfa gene in
transplantable tumors'> and GEMMs of cancer®®.

VEGFAisasecreted homodimeric protein required for embryonic
development of the vascular system'and is the fundamental VEGF fam-
ilymember operative inboth physiological and tumor angiogenesis™*.
Transcription of the VEGFA gene is regulated by various mechanisms™*.
Innormoxic cells, hypoxia-inducible factor 1a (HIF1x) is hydroxylated
by oxygen-sensing prolyl hydroxylases and targeted for degradation
by the von Hippel-Lindau (VHL) protein. In the hypoxic tumor micro-
environment (TME), HIF1la becomes stabilized to enhance VEGFA tran-
scription inboth cancer cells*” and tumor-associated cells**'. The HIF
pathway can also be activated through sustained receptor tyrosine
kinase signaling, genetic alterations in the VHL gene and the activity
of other transcription factors®. Several VEGFA isoforms—of which
VEGFA; is the most abundant and biologically important—are then
expressed through alternative mRNA splicing®*. The bioavailability
and activity of VEGFA partly depend on proteolytic remodeling of
the extracellular matrix (ECM), to which secreted VEGFA; binds and
becomes sequestered®*****,

The proangiogenic and vascular-modulatory functions of VEGFA
are primarily mediated by VEGF receptor 2 (VEGFR2; also known as
kinase insert domain receptor (KDR)) expressed in blood ECs***.
Ligand binding triggers VEGFR2 homodimerization and transphos-
phorylation. Activated VEGFR2 transmits signals both through the
PLCy (phospholipase Cy)-MEK-ERK pathway, which promotes EC
proliferation, and the PI3K-AKT-mTOR pathway, which is crucial for
EC survival. Moreover, VEGFR2 activates the protein kinase SRC at EC
junctions, leading to the phosphorylation and internalization of vas-
cular endothelial cadherin (CDHS) and disruption of paracellular junc-
tions, thusincreasing vascular permeability. VEGFA also binds a second
receptor, VEGFRI (also known as Fms-related tyrosine kinase 1 (FLT1)),
on ECs. However, the weak tyrosine kinase activity of VEGFRI1 and its
high affinity for VEGFA suggest that it is a decoy receptor that reduces
the bioavailability of VEGFA for binding to VEGFR2, thereby limiting EC
proliferation and angiogenesis. Furthermore, ECs canrelease asoluble
form of VEGFR1 that traps VEGFA in the extracellular milieu. VEGFR2
canalso heterodimerize with other VEGFRs (for example, VEGFR1 and
VEGFR3) and form complexes with coreceptors, such as neuropilins
(NRPs), modulating VEGFR2 signaling in vascular ECs***.

Initially thought to be restricted to ECs, the VEGFRs are also
expressed in non-EC types*. VEGFRI1-expressing monocytes and
macrophages are proangiogenic, and their frequency in blood or
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liver metastases correlates with worse outcomes in patients with
colorectal cancer®. Additionally, VEGFR1 mediates monocyte chem-
oattraction toward sources of VEGFA*® and thus to prospective sites
of angiogenesis. Subpopulations of T cells can also express VEGFR1
or VEGFR2, particularly upon activation and in certain cancers**.
Moreover, some cancer cells express VEGFRs, with responses to
VEGFA exhibiting complex and even contrasting effects on tumor
progression, invasion and metastasis**%. These varied outcomes can
alsobe modulated by distinct VEGFA coreceptors, such as NRP1and
NRP2, and by heterocomplexes between VEGFR2 and other receptor
tyrosine kinases*”*%,

The mechanisms of VEGFA-induced tumor angiogenesis have been
partly inferred from models of physiological angiogenesis, such as
embryonic and retinal development™***, In sprouting angiogenesis,
VEGFA gradients stochastically induce specialized ‘tip ECs” at the lead-
ing edge of vascular sprouts. These cells use ECM-degrading enzymes
andfilopodiato guide sprout elongation toward VEGFA. Behind the tip
ECs, proliferative ‘stalk ECs’ elongate the sprout and deposit basal mem-
brane constituents. Tip ECs, which do not proliferate, prevent adjacent
ECs from acquiring tip cell states through a paracrine mechanism
involving the delta-like ligand 4 (DLL4)-Notch pathway"***. Genetic or
pharmacological DLL4 blockadeincreases tip EC formation and results
in excessive vessel sprouting and a dysfunctional vasculature***,

In RIP1-Tag2 mice, VEGFA is expressed in normal and premalig-
nant pancreaticislets before the angiogenic switch, whereitislargely
sequestered in the ECM and remains inactive®. Activation of extracel-
lular proteases, including matrix metalloproteinase 9 (MMP9), releases
VEGFA from the ECM to enable its interaction with VEGFR2 on ECs,
thereby triggering the angiogenic switch and sustaining angiogenesis
during the subsequent stages of tumor progression®-*>**, VEGFA or
VEGFR2 blockade inhibits angiogenesis in mouse tumor models by
reducing the density, branching and permeability of TBVs"'2°%5! This
emphasizes the pivotal role of the VEGFA-VEGFR2 pathway in tumor
angiogenesis***, with potential modulatory contributions from other
VEGFRSs, such as VEGFR3 and its ligands (VEGFC and VEGFD)*?, and
coreceptorssuchas NRP1(ref. 53). VEGFA/VEGFR2 inhibition not only
impairs sprouting angiogenesis but also prunes newly formed TBVs>*’.
Mature TBVs are, however, more resilient owing to the protective
role of endothelium-associated pericytes®**. While inhibition of the
VEGFA-VEGFR2 pathway impairs the angiogenic switch in incipient
neoplasia®® and suppresses angiogenic sprouting in various transplant
tumor models®°, its effects are generally more nuanced and often
transient in GEMMs of advanced-stage cancer*®, mirroring clinical
observations'®¢,

Additional signaling pathways regulating tumor
angiogenesis

Angiogenesis bioassays®” have revealed other signaling moieties capa-
ble of stimulating and modulating BV growth. The roster includes
growth factors, cytokines, proteases and ECM glycoproteins, as well
aslipids and nucleic acids®, as exemplified below.

Fibroblast growth factor 1 (FGF1), one of the first EC mitogens
isolated®*®*, is part of a large family of structurally related FGFs. FGFs
interact with high-affinity receptors (FGFR1-FGFR4), along with
heparin/heparan sulfate proteoglycans as coreceptors, to promote
angiogenesis®>*®°, Unconventional secretion of FGF2 was associated
with the onset of angiogenesisina GEMM of fibrosarcoma®, and block-
ing multiple FGFs with a soluble FGFR (FGF trap) had antiangiogenic
effects in mouse tumor models®®., FGF signaling can cooperate with
VEGFA-induced angiogenesis and supplant it in the context of VEGFA
blockade®”". FGFRs are widely expressed, including in cancer cells
and cancer-associated fibroblasts (CAFs), such that FGF signaling may
have other tumor-promoting effects. Indeed, intratumoral FGF2 levels
correlate with clinical outcomes but not with microvessel density in
various human cancer types®°.

The platelet-derived growth factor (PDGF) family comprises
four heparin-binding growth factors that signal through the PDGFRa
and PDGFR receptors expressed in various cell types’. In cancer,
PDGF subunit B (PDGFB) can induce VEGFA expression” and support
angiogenesis by affecting stromal and immune cells’. EC-derived
PDGFB recruits PDGFRB-expressing pericytes that stabilize nascent
TBVs™. Conversely, PDGFR inhibitors disrupt EC-pericyte interac-
tions, enhancing the sensitivity of TBVs to VEGFA/VEGFR inhibitors®®,
Accordingly, simultaneous inhibition of VEGFRs and PDGFRs shows
clinical efficacy in some human cancers”™’.

Angiopoietins (ANGPTs) are cytokines operative in develop-
mental, physiological and pathological vascularization”’. ANGPT1
and ANGPT2 bind the TIE2 (also known as TEK) receptor (along with
TIE1 and integrins as coreceptors) expressed in ECs and subsets of
hematopoietic cells”. While pericyte-derived ANGPT1 promotes EC
survival and quiescence in normal vasculatures, ANGPT2 is elevated
by hypoxia and inflammatory stimuli in ECs of many human malig-
nancies, where it facilitates angiogenesis largely through autocrine
signaling in VEGFA-stimulated ECs”"’%. Specific ANGPT2 blockade
has antiangiogenic effects encompassing both vascular pruning and
normalization””’*°, which are enhanced by concomitant VEGFA
signaling inhibition®%,

Additional growth factors, cytokines and chemokines facili-
tate tumor angiogenesis by directly stimulating ECs or indirectly
influencing cancer cells and tumor-associated cells®. These include
transforming growth factor-f3 (TGFf), tumor necrosis factor (TNF),
insulin-like growth factor 1 (IGF1), hepatocyte growth factor (HGF),
apelin (APLN), interleukin-1p (IL-1B), IL-6, CXC chemokine ligand 8
(CXCL8) and CXCL12, as well as various adipokines and inflammatory
mediators®. Their activities are multifaceted, redundant and context
dependent. Additionally, secreted proteases, including plasmin, MMPs
and cathepsins, regulate the proangiogenic activity of growth factors,
such as VEGFA and TGFp, by converting latent formsinto bioactive ones
through ECM remodeling®. Lipid mediators, noncoding RNAs and
other nonproteinaceous molecules also contribute to tumor angiogen-
esisin concert with VEGFA and other key angiogenic factors®.

A variety of molecules can induce EC quiescence (angiostasis)
or regress angiogenic TBVs'®20214286-88 A fragment of plasminogen,
called angiostatin, was among the first to be identified®. ECM glyco-
proteins such as thrombospondin 1 (THBS1) and osteonectin (also
known as secreted protein acidic and rich in cysteine (SPARC)) also
exhibit antiangiogenic functions*. Proteolytic ECM remodeling gen-
erates bioactive collagen fragments such as endostatin®, which limits
angiogenesis by competing with EC integrins for interaction with
ECM proteins?>?"?**2_ Endostatin appeared early on to be a promis-
ing candidate for antiangiogenic therapy'®, but challenges with its
stability and manufacturing costs delayed clinical development?.
Interferons (IFNs), which are primarily secreted by activated immune
cells, canelicit antiproliferative and proapoptotic effectsin tumor ECs.
IFNa and IFNB downregulate proangiogenic factors in cancer cells***°
and show antiangiogenic properties in mouse tumor models®** and
highly angiogenic human cancers®*. IFNy directly restrains EC prolifera-
tion” and instigates angiostatic macrophage programming’. Several
IFN-inducible factors, such as IL-12, CXCL9, CXCL10 and CXCL11, also
exhibitantiangiogenic activity”. Itis tempting to speculate that some
ofthe antitumoral responses in patients treated withimmunotherapies
may also involve IFN-dependent effects on the tumor vasculature®*”%,

Involvement of accessory cells in tumor
angiogenesis

It was initially envisaged that angiogenesis-inducing ligands would
be largely expressed by cancer cells as part of their malignant phe-
notype'>**%, However, in many tumorigenesis pathways, angio-
genesis is sustained, at least partly, by accessory cells recruited to
form the heterotypic TME***° (Fig. 2). These cells promote tumor
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Fig.2|Accessory cells in tumor angiogenesis. The schematicillustrates
signaling in the TME by accessory cells that either stimulate or inhibit tumor
angiogenesis. The stimulators (top) include neutrophils/MDSCs, M2-like
TAMs, CAFs and T, cells that cooperatively promote angiogenesis by secreting
proangiogenic growth factors (for example, VEGFA, FGF2, CXCL8, CXCL12,
Wnt family member 7B (WNT7B), BV8 and PDGFC). Neutrophils/MDSCs and
TAMs canalso release bioactive MMP9, which liberates VEGFA sequestered and
latent in the ECM. Autocrine ANGPT2 signaling in ECs disrupts pericyte-EC

Endothelial cell

Fibroblast

|-/ Tipendothelial cell

interactions to enable VEGFA-dependent angiogenesis. T cells can modulate
angiogenesis indirectly, for example, by programming TAMs to either M2-like
(throughIL-4) or M1-like (through IFNy) states. Conversely (bottom), ECs recruit
pericytes through PDGFB to stabilize newly formed BVs; in turn, pericytes secrete
ANGPT1, which promotes EC survival and quiescence. M1-like TAMs can inhibit
angiogenesis through the secretion of CXCL9, CXCL10 and CXCL11, which may
actdirectly on TBVs and also recruit and activate T cells. The multifaceted effects
of cancer cells on the programming of these accessory cells are not shown.

angiogenesis by expressing angiogenesis-inducing ligands, including
VEGFA, or proteases that release angiogenesis factors from sequestered
latent states®.

Induction of the angiogenic switch and the persistence of
tumor angiogenesis involve the recruitment of hematopoietic and
mesenchymal-lineage cells from proximal tissues and the bone mar-
row”.Once embedded in the TME, these accessory cells display altered
phenotypes and metabolic states in response to tumor-derived cues,
often manifesting tumor-promoting capabilities®. Both cancer cells
andaccessory cells cansecrete VEGFA in response to hypoxia. Accord-
ingly, selective blockade of human VEGFA only moderately affects
vascularization and tumor growthin xenograft models", whereas dual
human/mouse-specific blockade achieves more profound effects®’.

Myelomonocytic cells, including monocytes, monocyte-derived
macrophages and tissue-resident macrophages—collectively referred
to as tumor-associated macrophages (TAMs)—have long been impli-
cated as positive regulators of tumor angiogenesis'°*', TAMs undergo
proangiogenic programmingin response to hypoxiaand tumor-derived
factors®°%'% actingasasource of VEGFA, other proangiogenic factors
and ECM-remodeling proteases™**#04210471% They closely interact with
nascent TBVs to promote angiogenesis’>'%”'°” and facilitate vascular
co-option by invasive cancer cells through their ECM-remodeling
capacity™. Lineage tracing and targeted cell-elimination studies using
a Tek-regulated genetic system'” identified a subset of perivascular
TAMs overexpressing CD163, lymphatic vessel endothelial hyaluro-
nan receptor 1 (LYVE1), stabilin 1 (STAB1), mannose receptor C type 1
(MRC1), NRP1,IGF1and CXCL12inmammary tumor models™. Perivas-
cular TAMs exhibiting different combinations of these markers have
been documented in a variety of mouse and human cancer types'*'?,
where they facilitate angiogenesis, vascular permeability and metas-
tasis*101108109112-114 The ‘angio-TAMs’—a transcriptionally defined TAM
subset with an angiogenic signature involving higher expression of
VEGFA, osteopontin (also known as secreted phosphoprotein1) and ver-
sican—was revealed by single-cell RNA sequencing (scRNA-seq) in sev-
eral human cancer types'™. Future studies using targeted cell-depletion

strategies coupled with spatial transcriptomics may provide insights
into the functional relationships between angio-TAMs'” and the previ-
ously defined perivascular TAMs'?2,

Granulocytic myeloid cells, including mast cells and neutro-
phils, are known sources of proangiogenic factors in tumors*"¢,
Mast cells secrete pro-MMPs and other proteases, including chy-
mase and tryptase, which activate pro-MMPs'”. They also release
macrophage-attracting cytokines thatindirectly promote tumor angio-
genesis by recruiting TAMs"®, Upon activation, human neutrophils
deploy granules containing VEGFA™ and pro-MMP9 unencumbered
by tissue inhibitors of metalloproteinases'?, thus facilitating MMP9
activationand VEGFA mobilization. Neutrophils undergo an aberrant
maturation trajectory intumor-bearing mice and patients with cancer,
acquiring proangiogenic functions; in cancer, they are sometimes
referred to as myeloid-derived suppressor cells (MDSCs)''. Neutro-
phils serve as sources of VEGFA, MMP9, prokineticin 2 (PROK2, also
known as BV8), FGF2 and other proangiogenic factors*>¢0116120122-127
They contribute to the angiogenic switch in RIP1-Tag2 mice, partly
through MMP9-mediated VEGFA mobilization, but have no discern-
able effects onthe maintenance of the angiogenic phenotype in more
advanced tumor stages*'?*'**, Indeed, neutrophils support tumor
angiogenesis in concert with other accessory cells, especially TAMs,
and eliminating one cell type experimentally can trigger compensa-
tory responses by others'”*'*, Diverse developmental states exist
among tumor-associated neutrophils, each with nuanced angiogenic
capacities"*°, For example, SiglecF"&" neutrophils display upreg-
ulated expression of angiogenesis and ECM-remodeling genesina
lung adenocarcinoma model™. Conversely, IFNB signaling may abate
neutrophil expression of proangiogenic factors'”> and rewire neutro-
phil granulopoiesis toward an antitumoral and vascular-damaging
phenotype®*,

Lymphocytes and natural killer (NK) cells also modulate tumor
angiogenesis™. For example, immunosuppressive regulatory T (T,e,)
cells increased VEGFA bioavailability in a mouse model of ovarian
cancer™. Tumor-induced suppression of NK cells and T cells may
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Fig. 3| Diversity of tumor vascularization: the angiogenic switch and vascular
co-option. The schematicillustrates the phenotypic diversity of ECsin TBVs.
Tumors may induce sprouting angiogenesis (top), which is primarily induced by
VEGFA. Specialized ECs, called tip ECs, sense VEGFA gradients and direct vessel
elongation toward sources of VEGFA, which is sustained by proliferative ECs
called stalk cells. In angiogenic BVs, some ECs may undergo EndMT (right), a
phenotypic state involving proliferative, secretory and profibrotic capabilities,
which contributes to vascular dysfunction, inflammation and fibrosis.
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Cancer cells may also access the vasculature without inducing angiogenesis
(left) through a process termed vascular co-option or perivascular invasion.
This mode of tumor vascularization has been observed in both primary and
metastatic tumors and may be exacerbated during VEGFA signaling blockade. In
conceptualizing the progression of multistage tumorigenesis, these alternative
phenotypic states can be viewed as reflecting an angiogenic switchand a
perivascular invasive switch in cancer cells.

lead to dysfunctional phenotypes with associated proangiogenic
activity”"*. However, lymphocytes and NK cells are most commonly
characterized as antiangiogenic®. Indeed, their activation and IFNy
production can elicit antiangiogenic responses in tumors®*%,

CAFs contribute to generating a reactive and angiogenic stroma
that perpetuates tumor-promoting responses in solid tumors'. CAFs
have been shown to stimulate the malignant progression of preneo-
plastictissue by altering the biology of the epithelium and surrounding
vasculature inindividuals predisposed to breast cancer due to BRCA1
mutations™®, SCRNA-seq has uncovered substantial CAF heteroge-
neity in both mouse and human tumors'”. In MMTV-PyMT (mouse
mammary tumor virus-polyoma middle tumor antigen) mammary
tumors, three distinct CAF subpopulations were identified, with one,
called vascular CAFs, being highly enriched in genes linked to vascu-
lar development and angiogenesis'*®. CAFs produce various proan-
giogenic factors?*199135139140 and the CAF secretome also indirectly
enhances tumor angiogenesis by attracting proangiogenic myeloid
cellsfromthe systemic circulation through chemokines such as CXCL8
and CXCLI12 (refs. 29,135,141). Beyond CAFs, other mesenchymal cells
also exhibit proangiogenic activity. Tumors that arise within or near
adipocyte-rich tissues, such as breast and ovarian cancers or bone
metastases, are exposed to adipocyte-derived factors—collectively
termed adipokines—that have proangiogenic functions**,

It should be emphasized that most of the above-discussed studies
used mouse tumor models as a platform for mechanistic investigations.
Although TAM and CAF numbers positively correlate with vascular
density in several human cancer types'**'**, this association
does not necessarily imply a causative role. Interrogating the
vascular-modulatory functions of tumor-associated cells in patients
with cancer remains challenging owing to the limited availability of
pre-and posttreatment biopsy data and, perhaps more critically, alack
of drugs selectively targeting specificaccessory cell types in the TME?.

Phenotypicdiversity of EC states and tumor
vascularization

Classical angiogenesis bioassays®* initially suggested that solid
tumors would be vascularized by phenotypically homogeneous—
albeit aberrant—capillary ECs'*. However, advances in molecular
genetics, single-cell analysis and imaging technologies have revealed
that tumor ECs exhibit diverse and dynamic states'*'¥, including
abnormally proliferating'®, senescent*s, transdifferentiated'* and
immune-modulatory****">' ECs. Tumors can also co-opt quiescent BVs
fromsurrounding tissues’ (Fig. 3). The regionally variable stimulation of
the endothelium by aplethora of vascular regulatory factors produced
by cancer cellsand recruited accessory cells in distinct TMEs probably
resultsinstates of phenotypic plasticity and heterogeneity pertinent to
understanding the complicated responses to antiangiogenic therapies.

Arecent review of sScRNA-seq datasets has cataloged a constella-
tion of EC states varying across different tumor types and studies'”,
probably reflecting the existence of multifunctional, heterogeneous
EC phenotypes. Certain EC clusters appear to be conserved across
multiple cancer types. For example, the expression of the plasma-
lemma vesicle-associated protein (PLVAP) gene, induced by VEGFA
signaling, identifies potentially angiogenic, metabolically active and
immunosuppressive EC clusters. Conversely, EC clusters expressing the
atypical chemokinereceptor 1(ACKRI) gene may have proinflammatory
and immunostimulatory functions'’. These findings, while currently
descriptive, may help identify more selective and potentially effective
therapeutic targets in the tumor endothelium.

ScRNA-seq analysis of the human lung cancer vasculature has
identified ECs with features of normal arterial, postcapillary venule and
capillary ECs, alongside subpopulations with differentially activated
regulatory states, totaling over a dozen distinct phenotypes’®. Among
them, tip ECs display conserved phenotypes in human and mouse
lung tumors, suggesting shared mechanisms of VEGFA-induced tip EC
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formation. A distinct EC state, termed ‘breach’ cell, expresses typical
tip EC genes along with ECM-remodeling genes. Moreover, the bulk
of proliferating (‘stalk’) ECs could be resolved into several phenotypic
states, including ‘scavenging’ ECs with higher expression of cathepsins
and scavenger receptors™ that may facilitate ECM degradation for
vascular invasion in the tumor stroma.

The human lung cancer vasculature exhibits a higher proportion
of proliferative ECs compared to the normal lung vasculature'>'*,
This is consistent with earlier studies of breast and colorectal cancer
indicating increased EC proliferation in tumors (3-10%) compared to
adjacent normal tissue (0.1-1%), with up to 20% of ECs with a prolif-
erative phenotype at the invasive tumor margins"*'>. Notably, lower
frequencies of proliferating ECs were observed in human lung and
breast cancer compared to mouse models">"*°, possibly due to agreater
reliance on vascular co-option in human tumors’. Nonetheless, both
human and mouse tumor ECs exhibit higher RNA content, activation
of MYC target genes and increased nucleotide metabolism compared
to normal tissue ECs, probably indicative of enhanced transcription
and proliferation'’. Metabolic pathway analysis further revealed a shift
toward aerobic glycolysis in tumor ECs, which may facilitate rapid ATP
production and oxygen transfer to surrounding cells™".

Tumor ECs can undergo senescence, a potentially reversible
cell-cycle arrest state that may precede clearance of dysfunctional
cells"®"*%, A meta-analysis of scRNA-seq datasets indicated that tumor
ECs can manifest senescent phenotypes involving upregulated expres-
sionof inflammatory mediators, chemokines and adhesion molecules
that may facilitate recruitment of protumorigenic inflammatory cells™.
A senescent EC signature negatively correlates with survival and
response toimmunotherapy in abroad range of cancer types'”. Addi-
tionally, in some pathological conditions, subsets of vascular ECs down-
regulate the expression of junctional proteins (for example, CDH5) and
concurrently develop mesenchymal cell features, a process distinct
from cellular senescence and termed endothelial-to-mesenchymal
transdifferentiation (EndMT)™. During EndMT, ECs acquire prolif-
erative, secretory, thrombogenic and profibrotic phenotypes that
contribute to vascular dysfunction, inflammation and tissue fibrosis. In
cancer, EndMT may facilitate the generation of adesmoplastic stroma
throughincreased vascular leakage and ECM deposition, thereby pro-
moting cancer cell motility, invasion and metastasis'’. Accordingly, an
EndMT signature is associated with aworse prognosis and therapeutic
resistance in pancreatic adenocarcinoma'.

Another layer of complexity pertains to theimmunomodulatory
properties of tumor ECs"'’, Chronic exposure to VEGFA and other
tumor-derived factors renders ECs unresponsive to proinflammatory
stimulisuch as TNF and IL-1f3 (ref. 161). This anergic EC state involves the
downregulation of T cell adhesion receptors and increased expression
of molecules that hinder T cell transmigration'®, leading to reduced
T cell recruitment into tumors™%'®', SCRNA-seq analysis revealed sig-
nificant downregulation of genes related to antigen presentation,
immune-cell chemotaxis and immune-cell trafficking in human lung
and mammary tumor ECs compared to healthy tissues™*"’. Thus, TBVs
canbeimmunosuppressive**'®', Nevertheless, solid tumors can occa-
sionally develop high endothelial venules (HEVs), specialized vessels
thatenable T celland B cell transmigrationin lymphoid organs. Insome
tumors, HEVs contribute to generating T cell-richimmune aggregates
similar totertiary lymphoid structures, which are associated with anti-
tumor immunity and a more favorable prognosis™"'®'. HEVs, induced
by IFNy, TNF and lymphotoxins produced by activated lymphocytes
and NK cells, are often found at the tumor periphery and appear to
form independently of angiogenesis, potentially through co-option
of postcapillary venules and progressive T cell accrual™'®*,

As noted above, human tumors can vascularize both through
sprouting angiogenesis and co-option of preexisting vessels®. A third
mode of tumor vascularization has been observed in early-stage
colorectal carcinogenesis, where crypt hyperplasias vascularize

by attracting venous ECs from adjacent, nontransformed epithe-
lial regions in a process that is dependent on APLN but independ-
ent of VEGFA'*. This represents an unconventional mode of
neovascularization distinct from both vessel co-option and sprout-
ing angiogenesis, asitinvolves crypt-ward migration of tube-forming
ECs in the absence of EC proliferation; its generality remains to
be ascertained.

Although most tumors contain bothangiogenic and co-opted BVs,
considerable variationis observed, with tumorsin highly vascularized
organs (for example, lung, brain, liver and lymph node) often display-
ingmoderate-to-high degrees of vascular co-option. For example, the
analysis of lung metastases from primary tumors of the breast, colon
and kidney found evidence of vessel co-option in approximately 80%
of the cases'. In low-grade gliomas of the brain, cancer cells co-opt
existing vessels without disrupting the blood-brain barrier’. However,
high-grade gliomas often display mixed angiogenic and co-opted
vasculatures. The latter involves ‘perivascular cuffing’, a process in
which cancer cells surround brain capillaries to replace pericytes and
astrocytes, thus disrupting the blood-brain barrier'®. Perivascular
spreading and dislodging of pericytes have also been observed in the
initial steps of brain metastasis of mouse lung and mammary tumors'’.
The epithelial-to-mesenchymal transition of cancer cells may facilitate
perivascular invasion during the initial steps of metastatic coloniza-
tion'*®7°, Overt metastatic outgrowth, however, is often associated
with vascular remodeling and sprouting angiogenesis>""'72,

Regardless of the mechanismsinvolved, co-opted TBVs are distinct
from irregular and chaotic angiogenic TBVs?. SCRNA-seq analysis of
mouse tumors with spontaneous or induced vessel co-option cor-
roborated earlier histological findings that co-opted tumor ECs are
largely quiescent, lack both tip and proliferating cells and, perhaps
unexpectedly, exhibit transcriptomic profiles reminiscent of normal
ECs"°. Notably, specific protein biomarkers distinguishing co-opted
tumor ECs from normal tissue ECs are currently unavailable. Intrigu-
ingly, tumor regions with co-opted BVs have occasionally been found
to be hypoxic and with upregulated VEGFA expression despite a lack
of evidence for angiogenesis'”>. These results suggest that ill-defined
mechanisms, possibly involving accessory cells such as angiostatic
macrophages'’, render co-opted BVs recalcitrant to hypoxia-induced,
VEGFA-mediated proangiogenic signaling, potentially explaining the
insensitivity of some tumors to VEGFA pathway inhibitors'®’.

Development of angiogenesis inhibitors for
cancer therapy

The discovery and functional validation of VEGFA signaling in cancer
were concurrent with the pioneering of mechanism-based targeted
therapies aimed at oncogenes, which demonstrated the clinical poten-
tial of biological therapies for treating cancer’. These milestones
paved the way for the development, clinical testing and approval of
drugs thatinhibit tumor angiogenesis by targeting VEGFA/VEGFR and
additional signaling pathways'"'5*,

The VEGFA monoclonal antibody bevacizumab (Avastin) gained
initial approval for metastatic colorectal cancer and is now approved
for treating other tumor types, including lung, renal, cervical, ovar-
ian and liver cancer, in combination with other agents” "%, Adding
bevacizumab to standard-of-care therapy in clinical trials typically
produced delayed time to progression with demonstrable, but gener-
allymodest, overall survival benefits''®. However, it showed no survival
benefitsin patients with other tumor types, such as metastatic breast
cancer'”. Distinct VEGF-targeting biologics have also been approved,
including ramucirumab (a VEGFR2 monoclonal antibody) for gastric
and lung cancer”®"” and aflibercept (a VEGF trap) for colorectal can-
cer'’®, Ramucirumab and aflibercept can block multiple VEGF family
members, such as placental growth factor (PIGF) and VEGFB, although
the combined benefits of neutralizing these factors along with VEGFA
remain unclear®,
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Bevacizumab rapidly reduces blood flow in human tumors”* !
by inhibiting sprouting angiogenesis, leading to decreased microves-
sel density, and suppressing VEGFA-induced nitric oxide production,
causing vasoconstriction'®*. Paradoxically, VEGFA blockade can also
transiently improve blood flow through ‘vascular normalization’,
shifting the balance from growth to maturation of TBVs'*"'¥*'%%, The
consequences of this remodeling are fewer vascular sprouts, increased
pericyte coverage, reduced vascular leakage, improved blood perfu-
sion and enhanced drug delivery through the systemic circulation. A
theorythataccommodatesbothreduced vascularization andimproved
blood flow after VEGFA blockade envisions that vascular normalization
is a dynamic response governed by the degree and kinetics of VEGFA
signaling inhibition'®*, A ‘normalization window’ has been identified
in mouse tumor models, which can be extended by varying the dos-
ing of VEGF pathway inhibitors'*'®, As a single agent, bevacizumab
counteracts VEGFA-induced vascular permeability in human glio-
blastoma and helps control cerebral edema, thus providing benefits
despiteitsinconsequential effects on tumor progression'®®. Moreover,
improved blood flow and drug delivery may contribute to the additive
clinical benefits of combining VEGFA inhibition with chemotherapy,
forexample, in colorectal and lung cancers' . While the mechanisms
by whichblocking VEGFA improves tumor response to chemotherapy
areincompletely understood'”"®, VEGFA signaling stimulates vascular
ECsand TAMs to adoptimmunosuppressive phenotypes thatlimit the
efficacy of chemotherapy and other anticancer agents**"**'*. Beyond
VEGF inhibition, additional strategies can demonstrably normalize
TBVs, including enforced expression of semaphorin 3A (SEMA3A)'8,
delivery of agonists of the lymphotoxin-p receptor (LTBR)'’, blocking
ANGPT?2 (refs. 79,80,85) or activating TIE2 (ref. 190), and inhibiting
leucine-rich a-2-glycoprotein-1(LRG1)"".

Recent scRNA-seq studies have provided new and potentially
clinically relevant insights into the effects of VEGFA signaling inhibi-
tion in mouse tumor models*'*%, The analysis of human tumor xeno-
graftsrevealed reduced numbers of tip ECs after aflibercept treatment,
indicating acute inhibition of sprouting angiogenesis'”>.. However,
stalk-like cells persisted, suggesting limited effects on preexisting
TBVs. Another study using the VEGFR2-specific antibody DC101
(aramucirumab surrogate) inalung tumor model showed that tip and
breach ECs were most sensitive to the treatment, whereas stalk ECs were
less affected™. Intriguingly, DC101increased gene signatures linked to
mature vascular functions, including an activated postcapillary vein
phenotype™ characteristic of HEVs™'. Whether these changes repre-
sent transient vascular normalization or transition from angiogenesis
to vessel co-option remains to be determined.

Several small-molecule receptor tyrosine kinase inhibitors, with
broader specificity than VEGFA/VEGFR2-targeted biologics, exhibit
antiangiogenic and antitumoral effects'®. By primarily targeting both
VEGFRs and PDGFRs, sorafenib and sunitinib disrupt TBVs by dis-
sociating PDGFR-dependent pericytes from newly formed EC tubes,
rendering them more sensitive to VEGFR2 inhibition®. These inhibi-
tors are approved as single agents for treating various cancer types,
including pancreatic neuroendocrine tumors, gastrointestinal stromal
tumors, hepatocellular carcinoma and renal cancer’™’®. Other inhibi-
tors, including axitinib, apatinib, lenvatinib, cabozantinib, pazopanib
and regorafenib, block VEGFRs and other tyrosine kinases, includ-
ing PDGFRs, KIT, TIE2, FGFRs and cMET. They are approved for colo-
rectal and renal cancer and hepatocellular carcinoma, often in the
advanced or metastatic setting'®. Small-molecule mTOR inhibitors
(rapalogs)—temsirolimus and everolimus—produce antiangiogenic
effects by interfering with the PI3K-AKT-mTOR pathway'”. They are
approved for the treatment of advanced renal cell cancer, pancreatic
neuroendocrine tumors and breast adenocarcinoma. Of note, tumors
canrapidly revascularize upon therapy withdrawal using empty base-
ment membrane sleeves left behind by regressed TBVs***’. For exam-
ple, discontinuation of sunitinib treatment in patients with renal cell

carcinomaresultedinbrisk tumor revascularization sustained by highly
proliferative ECs'*.

Asnoted above, ANGPTs have beeninvestigated as antiangiogenic
targets’”'”, The ANGPT1/2-targeting peptibody trebananib was the
first to enter clinical testing. While three clinical trials in patients with
advanced ovarian cancer failed to show benefit'”, neoadjuvant tre-
bananib improved event-free survival in high-risk, early-stage breast
cancer, ANGPT1and ANGPT2 have contrasting roles in tumor angio-
genesis®®, so blocking the vascular-normalizing effects of ANGPT1
might limit the benefits of targeting ANGPT2 in some contexts’*®, The
bispecific VEGFA/ANGPT2 antibody vanucizumab was compared to
bevacizumab in combination with chemotherapy in metastatic colo-
rectal cancer. Although vanucizumab was not superior to bevacizumab
inthe general population'”, aretrospective analysis showed potentially
meaningful benefits in patients with higher ANGPT2 levels in plasma
and tumors™®, in agreement with preclinical studies®®*.

The regulation of tumor angiogenesis is complex and multifac-
torial, and so are the responses to angiogenesis inhibitors®'*’ and
their associated toxicities™. Its targeting continues to be beneficial in
combination therapies, as further elaborated below.

Intrinsic and adaptive resistance to
antiangiogenic therapy

The observations that antiangiogenic drugs produced only transitory
efficacy in preclinical and clinical trials spurred investigationsinto the
underlying basis for relapse. Several modes of intrinsic and adaptive
resistance to antiangiogenic therapy have been revealed in mouse
tumor models®'*’, Moreover, the prevalence of vascular co-option
without evident angiogenesis in many human cancers may help
explain the relatively modest clinical benefits produced by angio-
genesis inhibitors”.

In early studies, recombinant endostatin could fully regress
rapidly growing transplant tumors without evidence of posttreatment
recurrence, spearheading the hypothesis that antiangiogenic therapy
would not lead to resistance'®. However, subsequent work in other
tumor models has revealed more nuanced antiangiogenic and antitu-
moral activities of endostatin®*°, Likewise, clinically approved agents
that efficiently quench VEGFA signaling generally achieved partial or
transient responsesin preclinical models, especially GEMMs of cancer,
suggestive of intrinsic or acquired/adaptive resistance®”*1?,

Redundancy in proangiogenic signaling can explain findings of
unabated or rebound angiogenesis occurringin the face of VEGFA sign-
aling inhibition®"’, Compensatory (adaptive) upregulation of proan-
giogenic growth factors has been well documented in mouse tumor
models following anti-VEGFA therapy. Inhibition of angiogenesis by
DC101inRIP1-Tag2 mice led to hypoxic upregulation of FGF2 and tumor
revascularization. Combining DC101 with FGF2 blockade extended the
temporal duration of the antiangiogenic response and delayed tumor
progression’’. FGFRinhibition also decreased the vascular density and
improved tumor response to anti-VEGFA therapy ina mouse model of
obesity-associated breast cancer”.. In patients with metastatic colo-
rectal cancer receiving bevacizumab with chemotherapy, serum FGF2
levelsincreased above baseline before the radiographic development
of resistance’”’. Brivanib, adual VEGFR/FGFR inhibitor, showed efficacy
in RIP1-Tag2 mice following resistance to sorafenib?’* In patients with
advanced hepatocellular carcinomaresistant to sorafenib, brivanib had
demonstrable activity in approximately 10% of the patients, although
it did not improve overall survival compared to placebo®. Besides
FGF signaling, ANGPT2 can limit the efficacy of anti-VEGFA therapy in
cancer. Dual VEGFA and ANGPT2 inhibition provides additive benefits
intumors that upregulate endothelial ANGPT2 when VEGFA signaling
is blocked®**. ANGPT2 may also mediate refractoriness to anti-VEGFA
therapy ab initio. Among patients with metastatic colorectal can-
cer who received bevacizumab combined with chemotherapy, low
pretreatment serum levels of ANGPT2 were associated with a better
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recruited T cells, such as IFNy, TNF and lymphotoxins, further stabilize T cell-
permissive BVs and HEVs, enabling the therapeutic activity of ICB in particular
and possiblyimmunotherapy in general. Combinations of VEGF pathway
inhibitors and ICB are producing added therapeutic benefits in anincreasing
number of preclinical and clinical cancer trials.

response’”. PDGFs, PROK2, IL-17 and CXCLS8 have also been mecha-
nistically implicated in the promotion of VEGFA-independent tumor
angiogenesis through direct orindirect effects on the vasculature®'*’.
Additional cytokines and growth factors, such as PIGF, VEGFA, VEGFD,
HGF, IL-6 and CXCL12, may serve as predictive biomarkers of response
to antiangiogenic therapy, irrespective of their potentially direct
involvement in mediating resistance’**%%2%°,

Asecond mode of resistance involves recruitment or in situ repro-
gramming of accessory cells®*’, For example, therapy-induced upreg-
ulation of colony-stimulating factor 3 (CSF3), CXCL8, CXCL12 and
chemokine ligand 2 (CCL2) fosters tumor infiltration by neutrophils/
MDSCs and TAMs, which sustain VEGFA-independent angiogenesis
through growth factors and proteases that counterbalance the loss
of VEGFA signaling in ECs®*124129187207 Simjlarly, CAFs release growth
factors that may rescue tumor angiogenesis and growth in the face of
VEGFA signaling blockade?****’, In VEGFA-depleted tumors of RIP1-Tag2
mice, CAFs upregulate periostin (POSTN), amatricellular protein that
attracts and retains proangiogenic TAMs. Genetic inactivation of Postn
or TAM ablation witha CSF1receptor (CSF1R) antibody inhibited tumor
revascularizationand progression during extended VEGFA blockade?°.
These preclinical findings should incentivize clinical testing of combi-
nations of angiogenesis and CSF1R inhibitors in patients with cancer'’.

Athird mode of resistance canemerge in treated tumors, whereby
cancer cells adapt metabolically to sustain growth despite restricted
nutrient and oxygen supply'®. For example, hepatocellular cancer
cells increase autophagy, a prosurvival response mediated by the
activation of the AKT-mTOR pathway in response to sorafenib-induced
hypoxia®?"?, Cancer cells in treated tumors may also engage in ‘meta-
bolic symbiosis’, a process whereby hypoxic cancer cells in avascular
tumor areasimportglucose and export lactate, whereas normoxic cells
near surviving or co-opted TBVsimport and use lactate ", Metabolic
reprogramming of cancer cells during antiangiogenic therapy may even

exacerbate their malignant behavior in mouse tumor models. For exam-
ple, sunitinib withdrawal led to accelerated tumor regrowth fueled by
ametabolic switchinvolvingincreased uptake and metabolism of fatty
acids in the cancer cells”®. Inhibition of fatty acid uptake, storage or
metabolism impaired cancer cell survival and tumor regrowth”*,
suggesting potential for cotargeting with the lipase inhibitor orlistat™®,
A fourth form of resistance involves progression to states of
heightened local invasion, whereby cancer cells grow by co-opting
the quiescent vasculature of local tissues without the need for neovas-
cularization'®*°?%, This phenomenon has been clearly documented
in human glioblastoma?****, However, a large meta-analysis of phase
3 trials involving more than 4,000 patients with colorectal, breast,
renal and pancreatic cancer indicated that disease progression was
not accelerated by bevacizumab treatment?”, Moreover, evidence
is still lacking that enhanced cancer cell invasion along co-opted BVs
accelerates tumor progression in most patients treated with VEGFA
inhibitors'®**?22% In mouse cancer models, increased perivascular
tumor invasion upon VEGFA signaling blockade was facilitated by
hypoxia-induced epithelial-to-mesenchymal transition and upregula-
tion of the HGF receptor cMET*”?%°, However, cMET inhibitors have
not shown clinical efficacy in tumors that lack activating mutations
or amplifications of the MET gene, arguing against a pivotal role of
cMET intumor invasion and metastasis®*°. Nevertheless, clearimprove-
ments in progression-free survival have not consistently translated
into extended overall survival in several phase 3 trials**, suggesting
therapy-induced mechanisms of tumor adaptation.

Harnessing vascular-immune crosstalk for
cancer therapy

The emergence of immunotherapies as a new dimension to cancer
therapeutics has been tempered by the realization that many solid
tumors erect multifaceted barriers to T cell infiltration and function®'.
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Among these, the aberrant tumor vasculature hyperstimulated by
chronicangiogenic signaling can expressimmunosuppressive factors
thatimpede T cells seeking to infiltrate tumors™%'**?*2, Concordantly,
vascular remodeling by angiogenesis inhibitors can, in some cases,
demonstrably attenuate angiogenesis-associated immunosuppres-
sion to facilitate the efficacy of antitumor immunity. In preclinical
models and clinical trials, angiogenesis inhibitors have been found
beneficial in combination withimmune checkpoint blockade (ICB),
namely, programmed cell death protein1(PD-1) or programmed death
ligand 1 (PD-L1) antibodies, and other forms of immunotherapy—a
treatment modality that we here refer to as antiangiogenic immuno-
therapy?® (Fig. 4).

Antiangiogenic therapy has recently witnessed a clinical renais-
sance thanks to successful combinations of angiogenesis inhibi-
tors and ICB'®'*"?*!, The phase 3 KEYNOTE-426 trial demonstrated
the superiority of axitinib and pembrolizumab (a PD-1-blocking
antibody) over standard-of-care sunitinib in advanced renal cell
carcinoma®?. Other phase 3 trials combining axitinib or bevacizumab
with PD-1 or PD-L1 antibodies have shown clinical improvements
compared to sunitinib in the same cancer type”****. In phase 3 tri-
als with treatment-naive patients, bevacizumab plus atezolizumab
(a PD-L1-blocking antibody) was superior to sorafenib in advanced
hepatocellular carcinoma (IMbravel50), and atezolizumab improved
clinical response to bevacizumab plus chemotherapy in nonsqua-
mous non-small cell lung cancer (IMpowerl150)®"*¢_ As a result of
these and other trials, different combinations of angiogenesis inhibi-
torsand ICB have been approved as first- or second-line treatments
for advanced renal, liver and lung cancers'®*%'!, Promising results
have also been obtained in other cancer types, such as endometrial
and colorectal cancer®’?*®, Interestingly, recombinant endostatin
improved tumor response to ICB in a pilot clinical study in patients
with pretreated lung cancer®”,

ICB has been shown to prevent early exhaustion of T cells and
has demonstrable clinical activity in several cancer types, but these
benefits are often limited to patients with tumors containing preexist-
ing T cell infiltrates®'. Given that angiogenic TBVs typically suppress
T cellinfiltration, pharmacologically impaired angiogenic signaling
may improve T cell trafficking by normalizing TBVs or promoting HEV
formation®®"%1¢*2*2 Bulk and scRNA-seq analyses of ECs from mouse
tumors exposed to antiangiogenic agents have revealed upregulation
of genesinvolved inimmune-cell chemotaxis, T celladhesion and traf-
ficking, and antigen presentation®"**'°>?*°_Concurrent PD-1or PD-L1
blockade sustains the activation of T cells and protects them from
the inhibitory effect of PD-L1, which becomes upregulated in cancer
cells and accessory cells, including ECs, in response to T cell-derived
IFNy (refs. 85,241). Because IFNy is angiostatic, it further contributes
to sustaining vascular normalization®*>**>, Moreover, PD-L1 blockade
reprograms the tumor vasculature, tilting it toward a proinflamma-
tory and antigen-presenting cell-like state that can facilitate T cell
recruitment®*. This feed-forward loop, initiated by antiangiogenic
therapy and perpetuated through ICB, improved tumor control in
multiple models, including GEMMs of cancer refractory to either mono-
therapy®*"?%2*¢ Interventions limiting angiogenic signaling, such as
VEGFA or ANGPT2 blockade®****5247-251 targeting TNF-family factors
to the tumor vasculature'®>*>* or enhancing EC-pericyte interac-
tions'”***—among other approaches** ***~demonstrably enhanced
ICB outcomesinmice.

The presence of HEVsin certain human tumorsis associated with
better responses to ICB*"'®', Congruently, in preclinical models, the
inhibition of angiogenic signaling, especially when combined with
ICB, induces peri- and intratumoral HEV formation™', where circulating
T cells preferentially accumulate®”. T cells extravasating in HEV-rich
areas mature into PD-1'TCF1 (T cell factor 1)'CD8" T cell progenitors
that eventually differentiate into T effector cells'®. In turn, tumors
require sustained T cell and NK cell-derived signals, namely IFNy and

lymphotoxins, to maintain HEVs. Given that vascular normalization
in response to antiangiogenic therapy facilitates extravasation and
perivascularaccumulation of T cells®?8150161232 jt seems likely that the
so-called normalized TBVs also encompassed HEVs in studies in which
HEVs were not assessed.

Insome cases, longer-term analysis of clinical trials has revealed
more limited efficacy of antiangiogenic immunotherapy than seen
in interim reports, and evidence is emerging that certain patient
subgroupsvaryin clinical responses. Thus, in the phase 3 IMmotion151
trial, atezolizumab plus bevacizumab showed trends of improved
survival versus sunitinib only in those patients whose renal cell tumors
had pretreatment transcriptomic profiles indicative of T effector
or proliferative states®®. In the IMpowerl150 lung adenocarcinoma
trial, subgroup analysis showed no survival gains by atezolizumab
plus bevacizumab and chemotherapy, compared to bevacizumab
and chemotherapy, in patients whose tumors had wild-type KRAS
alleles®®'. Moreover, it was unclear whether bevacizumab contributed
to clinical response in the general population, although a modest
survival advantage was seen in patients with mutant KRAS tumors®’,
These clinical data are suggestive of complex mechanisms mediating
intrinsic or adaptive resistance to antiangiogenic immunotherapy
and echo observations in patients treated with other ICB combina-
tions?*". Predictive biomarkers of response are emerging that appear
to largely overlap with those identified previously for ICB; such bio-
markers need to be evaluated in prospective clinical trials. A high
neutrophil-to-lymphocyte ratio was predictive of poor response in
patients with renal cell carcinoma treated with axitinib plus ICB**2,
A meta-analysis of 30 tumor types, which used transcriptional profiles
to stratify patients based on baseline angiogenic and immune activity
gene sets, concluded that angiogenic activity and T cellimmunity are
inversely correlated across tumors*®, Tumors could be classified into
three angio-immune subtypes: high angiogenesis/low T cell activity
(C1), low angiogenesis/high T cell activity (C3) and intermediate states
(C2). Featuresinthe C3 group included a higher pericyte-to-EC ratio
(indicative of more mature or normalized TBVs) and higher inflam-
mationscores, including T effector cell functions. Interestingly, inthe
Javelin Renal 101 clinical trial, patients with renal cell carcinoma who
were categorized into the C3 angio-immune subtype had remarkable
responses to the combination of axitinib and avelumab (aPD-L1 anti-
body)******, Besides baseline features predictive of response, mecha-
nisms of adaptive resistance to antiangiogenicimmunotherapies are
currently being elucidated in mouse tumor models. For example, in
apreclinical GEMM of lung adenocarcinoma, antiangiogenic therapy
facilitated tumor infiltration by immunosuppressive T, cells, which
expressed higher PD-1levels than other T cell subsets®”. A PD-1 anti-
body preferentially bound to and activated the T, cells, thereby
limiting the efficacy of antiangiogenic immunotherapy. Disrupting
T, cell survival through TAM elimination unleashed the efficacy of
antiangiogenic immunotherapy®®.

VEGFA can have other immunosuppressive functions in the TME
that are independent of its effects on TBVs*‘. VEGFA can promote
the recruitment of circulating monocytes that differentiate into
immunosuppressive TAMs**?*®, impair dendritic cell maturation®®’
and induce T cell exhaustion®®, VEGFA induces tumor-infiltrating
VEGFR2-expressing CD8 T cells to express inhibitory immune check-
points through the VEGFR2-PLCy-calcineurin-NFAT (nuclear factor
of activated T cells) pathway, thereby promoting T cell exhaustion,
Accordingly, genetic inactivation of Vegfr2in T cells relieved T cell
exhaustion in a colorectal cancer model*®. VEGFA can also directly
promote T, cell expansion in tumor-bearing mice and patients with
cancer”®, Collectively, these findings underscore the multifaceted
role of VEGFA in the modulation of tumor-associated immunosuppres-
sion**"*° and may help explain the therapeutic benefits of inhibiting
angiogenic signalingin combination with therapeutic strategies aimed
to stimulate immune responses against cancer’s1¢-40.51,
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Concluding remarks

Angiogenesis has, on the one hand, been validated as a functional hall-
mark of cancer and anew drug target and, on the other hand, concep-
tually expanded in scope to embrace diverse functions well beyond
the supply of oxygen and nutrients to tumors. An emerging complex-
ity lies in the heterogeneity of tumor ECs and BVs, revealed in part by
single-cell analysis and mechanistic investigations in tumor models,
which have illustrated far more phenotypic states than those envis-
aged in earlier studies. Further delineating the heterogeneity of EC
states and vascularization patterns in tumors—and their significance
for tumorigenesis and consequentiality for anticancer therapy—stands
as an important challenge for the future. Most prominent is the reali-
zation that tumor vascularization can also be accomplished through
the co-option of quiescent BVs. The potential significance of vascular
co-optionis reflected in the unanticipated occurrence of resistance
to angiogenesis inhibitors, once buoyed by the hope that ECs, being
chronically proliferative and yet genetically stable, would not be subject
to therapeutic resistance.

Assilver lining for angiogenesis inhibitors in cancer therapy is
their capability to remodel the angiogenic tumor vasculature into
a state of quasi-normality by pruning angiogenic ECs while leaving
pericyte-covered ECs in a less dense vascular network more permis-
sive to T cell extravasation. As a result, angiogenesis inhibitors are
showing benefits in combination withimmunotherapies that bolster
T cell function. Because angiogenic scores based on transcriptional
profiling may not accurately distinguish angiogenic and co-opted
vessels, a key question for the future is whether tumors with vary-
ing ratios of angiogenic and nonangiogenic BVs—determined, for
example, by spatial transcriptomics—respond differently to antian-
giogenicimmunotherapy. Co-opted vasculatures are suspected to be
largely insensitive to VEGFA pathway inhibitors, such that tumors witha
prevalence of quiescent co-opted BVs are not expected to benefit from
therapeutic targeting unless inhibition of VEGFR signaling alleviates
tumor-associated immunosuppression independently of its effects
onTBVs. These broader conceptual horizons for the biology of tumor
vascularizationand angiogenic signaling solidify theirimportanceboth
for tumorigenesis and malignant progression and for incorporating
mechanism-guided drugs into combinatorial therapeutic strategies
that more broadly benefit patients with cancer.
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