

Milestones in tumor vascularization and its therapeutic targeting

Received: 4 August 2023

Michele De Palma & Douglas Hanahan

Accepted: 22 April 2024

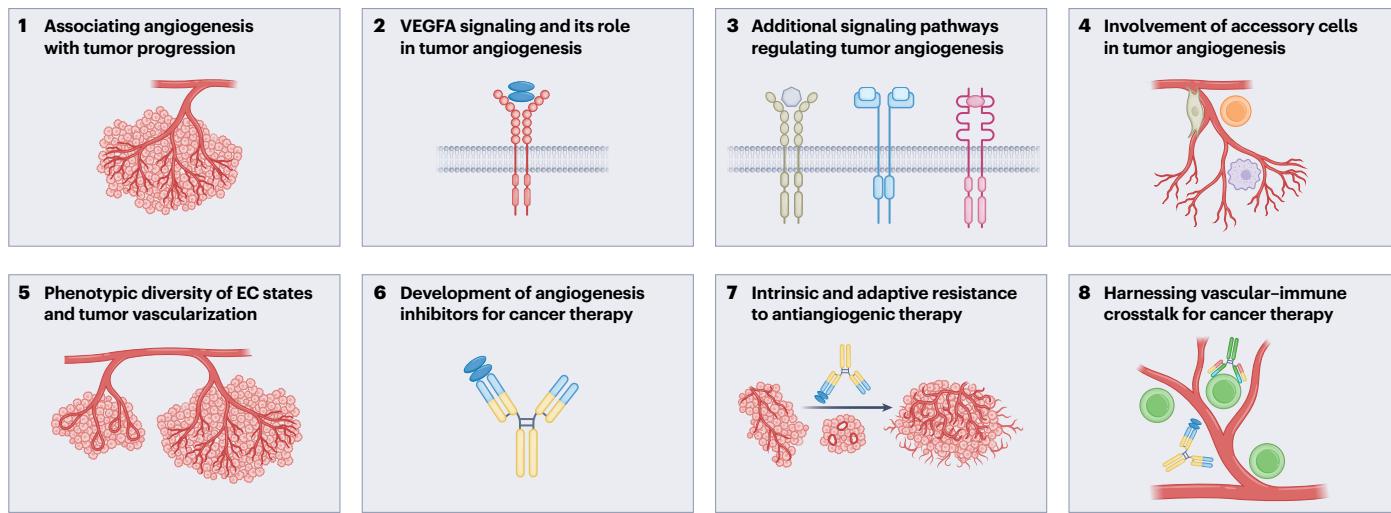
Published online: 25 June 2024

 Check for updates

Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.

The vascular system is composed of blood vessels (BVs) made of tube-forming endothelial cells (ECs) and periendothelial support cells¹. Like organs, tumors establish a vascular network that supplies oxygen and nutrients and satisfies the metabolic needs of proliferating cancer cells. Tumor vascularization is achieved primarily through angiogenesis, the process involving the sprouting and growth of new BVs from a preexisting vascular network. Owing to incessant and deregulated proangiogenic signaling, tumor BVs (TBVs) frequently manifest a chaotic architecture characterized by excessive branching, abundant dilatations, constrictions and dead ends, discontinuous EC lining, aberrant basement membranes and reduced pericyte coverage. These features are associated with defective BV maturation and functionality, leading to incoherent perfusion, fluid leakage and microhemorrhaging¹. However, increasing evidence indicates that tumors can also vascularize through angiogenesis-independent mechanisms, most prominently by co-option of the normal tissue vasculature through perivascular cancer cell growth. In these cases, the TBVs display a more coherent and organized architecture².

This Perspective focuses on the mechanisms of tumor vascularization and its therapeutic targeting, conceived in the form of eight conceptual milestones (Fig. 1). The related lymphatic vascular system that drains fluid from tissues and tumors through immune-sensing lymph nodes is beyond our scope and has been reviewed elsewhere³.


Associating angiogenesis with tumor progression

Tumors have long been known to vascularize by attracting and remodeling BVs^{4,5}. The use of transparent windows in the early twentieth

century revealed that implanting neoplastic tissue in experimental animals triggered more robust proliferative vascular reactions than nonneoplastic tissue. Moreover, tumor grafts failing to induce such vascular responses could not grow^{6,7}. This angiogenic response demonstrably involved hitherto unidentified, diffusible proangiogenic factors released by the tumor^{5,8}. In 1971, it was postulated that drugs capable of inhibiting tumor vascularization would provide therapeutic benefit^{9,10}, spawning the modern field of angiogenesis. In subsequent decades, it was experimentally validated that inhibiting angiogenic signaling indeed impairs the vascularization and growth of experimental tumors^{11,12} and provides clinical benefit to patients with cancer^{13–15}. However, despite early predictions of curative potential¹⁶, clinical outcomes typically only involved delayed time to progression, with modest overall survival benefits in selected cancer types^{17,18}.

The induction of tumor angiogenesis (the ‘angiogenic switch’) was found to represent a discrete and requisite step in the multistage development of certain tumor types^{19–21}, leading to its incorporation as a qualitatively distinct hallmark of cancer²². The occurrence of a discrete angiogenic switch was initially demonstrated in RIP1-Tag2 (rat insulin promoter 1-T antigen 2) mice, a genetically engineered mouse model (GEMM) of pancreatic neuroendocrine tumorigenesis²³. In these mice, a subset of oncogene-induced hyperplastic islets progress into ‘angiogenic islets’ and then solid tumors with an activated vasculature characterized by EC proliferation, capillary dilatation and sprouting, and frequent blood islands consequent to microhemorrhaging¹⁹. A fraction of the neoplastic islets were found capable of inducing the migration, proliferation and tube formation of cocultured ECs *ex vivo*,

¹Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland. ²Agora Cancer Research Center, Lausanne, Switzerland. ³Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland. ⁴Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland. e-mail: michele.depalma@epfl.ch; douglas.hanahan@epfl.ch

Fig. 1 | Eight conceptual milestones for tumor vascularization and its therapeutic targeting. (1) Associating angiogenesis with tumor progression; (2) VEGFA signaling and its role in tumor angiogenesis; (3) additional signaling pathways regulating tumor angiogenesis; (4) involvement of accessory

cells in tumor angiogenesis; (5) phenotypic diversity of EC states and tumor vascularization; (6) development of angiogenesis inhibitors for cancer therapy; (7) intrinsic and adaptive resistance to antiangiogenic therapy; and (8) harnessing vascular-immune crosstalk for cancer therapy.

indicative of a distinctive proangiogenic state¹⁹. Further evidence was provided in other cancer types^{24–27}. For example, activated BVs subtending increasingly aberrant epithelia were evident in the non-invasive stages of ductal carcinoma in situ in human breast cancer²⁶ and intraepithelial dysplasia in human cervical cancer²⁷. Induction of angiogenesis may thus precede and allow the malignant progression of different tumor types^{20–22}. The angiogenic switch was initially thought to depend on the de novo synthesis of proangiogenic factors¹⁹. However, a ‘balance hypothesis’ has since been proposed, suggesting that a biochemical equilibrium maintains BVs in a quiescent state. This equilibrium is disrupted during the angiogenic switch consequent to increased expression or bioavailability of angiogenesis inducers and/or reduced expression or bioavailability of angiogenesis inhibitors^{20,21}.

Perhaps counterintuitively, microvessel density in some human cancers is lower than in corresponding normal tissue²⁸. Both reduced oxygen consumption by cancer cells and their tolerance of hypoxic conditions may allow for increased intervessel distance in tumors compared to their normal tissue counterparts. Various parameters may influence microvessel density in tumors, including the mode of vascularization (angiogenesis versus co-option), the metabolic and proliferative phenotypes of cancer cells, the diversity and expression level of angiogenic regulators, and the biophysical properties of the tumor-associated stroma (for example, stiffness and interstitial pressure), all of which vary according to tumor type, anatomical site and stage of malignant progression²⁹. As a result, microvessel density does not reliably indicate the dependence of a tumor on angiogenesis²⁸.

Vascular endothelial growth factor A signaling and its role in tumor angiogenesis

The discovery of ‘tumor angiogenesis factors’ spanned several decades, culminating in the identification of signaling molecules capable of inducing angiogenesis⁵. The prototype was a secreted protein initially identified both as a vascular permeability factor and as a vascular endothelial growth factor (VEGF)^{30–33}, eventually named VEGFA. Its discovery led to the identification of transmembrane receptors for VEGFA expressed on blood ECs and other cell types^{34,35}. VEGFA proved to be induced in tumors^{36,37}, and functional validation of its involvement in tumor angiogenesis came from VEGFA neutralization studies in tumor-bearing mice¹¹ and genetic knockouts of the *Vegfa* gene in transplantable tumors¹² and GEMMs of cancer³⁸.

VEGFA is a secreted homodimeric protein required for embryonic development of the vascular system¹ and is the fundamental VEGF family member operative in both physiological and tumor angiogenesis³⁴. Transcription of the *VEGFA* gene is regulated by various mechanisms³⁴. In normoxic cells, hypoxia-inducible factor 1α (HIF1α) is hydroxylated by oxygen-sensing prolyl hydroxylases and targeted for degradation by the von Hippel–Lindau (VHL) protein. In the hypoxic tumor microenvironment (TME), HIF1α becomes stabilized to enhance *VEGFA* transcription in both cancer cells³⁷ and tumor-associated cells^{39–41}. The HIF pathway can also be activated through sustained receptor tyrosine kinase signaling, genetic alterations in the *VHL* gene and the activity of other transcription factors³⁴. Several VEGFA isoforms—of which VEGFA₁₆₅ is the most abundant and biologically important—are then expressed through alternative mRNA splicing³⁴. The bioavailability and activity of VEGFA partly depend on proteolytic remodeling of the extracellular matrix (ECM), to which secreted VEGFA₁₆₅ binds and becomes sequestered^{34,42,43}.

The proangiogenic and vascular-modulatory functions of VEGFA are primarily mediated by VEGF receptor 2 (VEGFR2; also known as kinase insert domain receptor (KDR)) expressed in blood ECs^{34,35}. Ligand binding triggers VEGFR2 homodimerization and transphosphorylation. Activated VEGFR2 transmits signals both through the PLCγ (phospholipase Cy)-MEK-ERK pathway, which promotes EC proliferation, and the PI3K-AKT-mTOR pathway, which is crucial for EC survival. Moreover, VEGFR2 activates the protein kinase SRC at EC junctions, leading to the phosphorylation and internalization of vascular endothelial cadherin (CDH5) and disruption of paracellular junctions, thus increasing vascular permeability. VEGFA also binds a second receptor, VEGFR1 (also known as Fms-related tyrosine kinase 1 (FLT1)), on ECs. However, the weak tyrosine kinase activity of VEGFR1 and its high affinity for VEGFA suggest that it is a decoy receptor that reduces the bioavailability of VEGFA for binding to VEGFR2, thereby limiting EC proliferation and angiogenesis. Furthermore, ECs can release a soluble form of VEGFR1 that traps VEGFA in the extracellular milieu. VEGFR2 can also heterodimerize with other VEGFRs (for example, VEGFR1 and VEGFR3) and form complexes with coreceptors, such as neuropilins (NRPs), modulating VEGFR2 signaling in vascular ECs^{34,35}.

Initially thought to be restricted to ECs, the VEGFRs are also expressed in non-EC types⁴⁴. VEGFR1-expressing monocytes and macrophages are proangiogenic, and their frequency in blood or

liver metastases correlates with worse outcomes in patients with colorectal cancer⁴⁵. Additionally, VEGFR1 mediates monocyte chemoattraction toward sources of VEGFA⁴⁶ and thus to prospective sites of angiogenesis. Subpopulations of T cells can also express VEGFR1 or VEGFR2, particularly upon activation and in certain cancers⁴⁴. Moreover, some cancer cells express VEGFRs, with responses to VEGFA exhibiting complex and even contrasting effects on tumor progression, invasion and metastasis^{47,48}. These varied outcomes can also be modulated by distinct VEGFA coreceptors, such as NRP1 and NRP2, and by heterocomplexes between VEGFR2 and other receptor tyrosine kinases^{47,48}.

The mechanisms of VEGFA-induced tumor angiogenesis have been partly inferred from models of physiological angiogenesis, such as embryonic and retinal development^{1,34,35}. In sprouting angiogenesis, VEGFA gradients stochastically induce specialized 'tip ECs' at the leading edge of vascular sprouts. These cells use ECM-degrading enzymes and filopodia to guide sprout elongation toward VEGFA. Behind the tip ECs, proliferative 'stalk ECs' elongate the sprout and deposit basal membrane constituents. Tip ECs, which do not proliferate, prevent adjacent ECs from acquiring tip cell states through a paracrine mechanism involving the delta-like ligand 4 (DLL4)-Notch pathway^{1,34,35}. Genetic or pharmacological DLL4 blockade increases tip EC formation and results in excessive vessel sprouting and a dysfunctional vasculature^{49,50}.

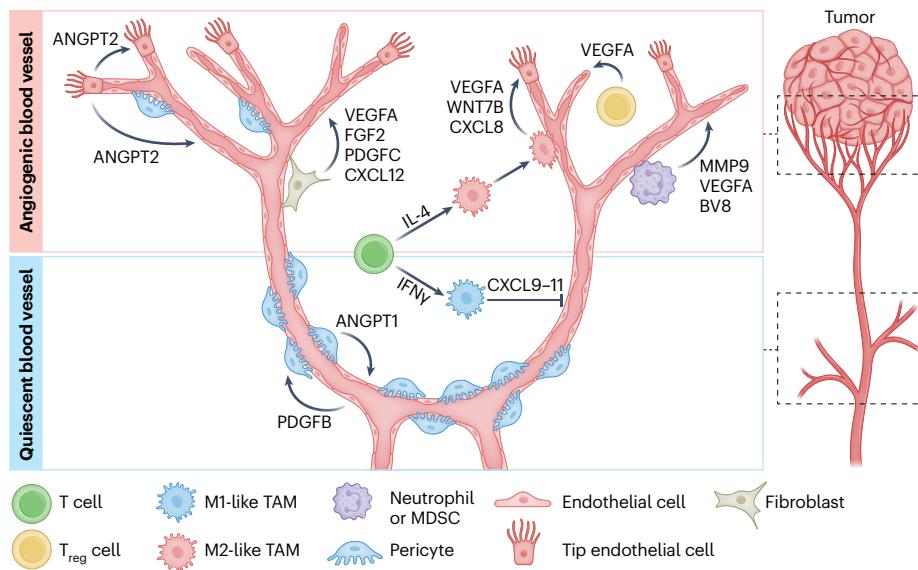
In RIP1-Tag2 mice, VEGFA is expressed in normal and premalignant pancreatic islets before the angiogenic switch, where it is largely sequestered in the ECM and remains inactive⁴³. Activation of extracellular proteases, including matrix metalloproteinase 9 (MMP9), releases VEGFA from the ECM to enable its interaction with VEGFR2 on ECs, thereby triggering the angiogenic switch and sustaining angiogenesis during the subsequent stages of tumor progression^{21,42,43}. VEGFA or VEGFR2 blockade inhibits angiogenesis in mouse tumor models by reducing the density, branching and permeability of TBVs^{1,11,12,38,51}. This emphasizes the pivotal role of the VEGFA-VEGFR2 pathway in tumor angiogenesis^{1,34,35}, with potential modulatory contributions from other VEGFRs, such as VEGFR3 and its ligands (VEGFC and VEGFD)⁵², and coreceptors such as NRP1 (ref. 53). VEGFA/VEGFR2 inhibition not only impairs sprouting angiogenesis but also prunes newly formed TBVs⁵⁴⁻⁵⁷. Mature TBVs are, however, more resilient owing to the protective role of endothelium-associated pericytes^{58,59}. While inhibition of the VEGFA-VEGFR2 pathway impairs the angiogenic switch in incipient neoplasia³⁸ and suppresses angiogenic sprouting in various transplant tumor models^{51,60}, its effects are generally more nuanced and often transient in GEMMs of advanced-stage cancer^{2,61}, mirroring clinical observations^{17,18,61}.

Additional signaling pathways regulating tumor angiogenesis

Angiogenesis bioassays⁶² have revealed other signaling moieties capable of stimulating and modulating BV growth. The roster includes growth factors, cytokines, proteases and ECM glycoproteins, as well as lipids and nucleic acids²⁹, as exemplified below.

Fibroblast growth factor 1 (FGF1), one of the first EC mitogens isolated^{63,64}, is part of a large family of structurally related FGFs. FGFs interact with high-affinity receptors (FGFR1-FGFR4), along with heparin/heparan sulfate proteoglycans as coreceptors, to promote angiogenesis^{65,66}. Unconventional secretion of FGF2 was associated with the onset of angiogenesis in a GEMM of fibrosarcoma⁶⁷, and blocking multiple FGFs with a soluble FGFR (FGF trap) had antiangiogenic effects in mouse tumor models⁶⁸. FGF signaling can cooperate with VEGFA-induced angiogenesis and supplant it in the context of VEGFA blockade⁶⁹⁻⁷¹. FGFs are widely expressed, including in cancer cells and cancer-associated fibroblasts (CAFs), such that FGF signaling may have other tumor-promoting effects. Indeed, intratumoral FGF2 levels correlate with clinical outcomes but not with microvessel density in various human cancer types^{65,66}.

The platelet-derived growth factor (PDGF) family comprises four heparin-binding growth factors that signal through the PDGFR α and PDGFR β receptors expressed in various cell types⁷². In cancer, PDGF subunit B (PDGFB) can induce VEGFA expression⁷³ and support angiogenesis by affecting stromal and immune cells⁷⁴. EC-derived PDGFB recruits PDGFR β -expressing pericytes that stabilize nascent TBVs⁵⁹. Conversely, PDGFR inhibitors disrupt EC-pericyte interactions, enhancing the sensitivity of TBVs to VEGFA/VEGFR inhibitors⁵⁸. Accordingly, simultaneous inhibition of VEGFRs and PDGFRs shows clinical efficacy in some human cancers^{75,76}.


Angiopoietins (ANGPTs) are cytokines operative in developmental, physiological and pathological vascularization⁷⁷. ANGPT1 and ANGPT2 bind the TIE2 (also known as TEK) receptor (along with TIE1 and integrins as coreceptors) expressed in ECs and subsets of hematopoietic cells⁷⁷. While pericyte-derived ANGPT1 promotes EC survival and quiescence in normal vasculatures, ANGPT2 is elevated by hypoxia and inflammatory stimuli in ECs of many human malignancies, where it facilitates angiogenesis largely through autocrine signaling in VEGFA-stimulated ECs^{77,78}. Specific ANGPT2 blockade has antiangiogenic effects encompassing both vascular pruning and normalization^{77,79,80}, which are enhanced by concomitant VEGFA signaling inhibition⁸¹⁻⁸⁵.

Additional growth factors, cytokines and chemokines facilitate tumor angiogenesis by directly stimulating ECs or indirectly influencing cancer cells and tumor-associated cells²⁹. These include transforming growth factor- β (TGF β), tumor necrosis factor (TNF), insulin-like growth factor 1 (IGF1), hepatocyte growth factor (HGF), apelin (APLN), interleukin-1 β (IL-1 β), IL-6, CXC chemokine ligand 8 (CXCL8) and CXCL12, as well as various adipokines and inflammatory mediators²⁹. Their activities are multifaceted, redundant and context dependent. Additionally, secreted proteases, including plasmin, MMPs and cathepsins, regulate the proangiogenic activity of growth factors, such as VEGFA and TGF β , by converting latent forms into bioactive ones through ECM remodeling⁴². Lipid mediators, noncoding RNAs and other nonproteinaceous molecules also contribute to tumor angiogenesis in concert with VEGFA and other key angiogenic factors²⁹.

A variety of molecules can induce EC quiescence (angiostasis) or regress angiogenic TBVs^{16,20,21,42,86-88}. A fragment of plasminogen, called angiostatin, was among the first to be identified⁸⁸. ECM glycoproteins such as thrombospondin 1 (THBS1) and osteonectin (also known as secreted protein acidic and rich in cysteine (SPARC)) also exhibit antiangiogenic functions⁴². Proteolytic ECM remodeling generates bioactive collagen fragments such as endostatin⁸⁷, which limits angiogenesis by competing with EC integrins for interaction with ECM proteins^{20,21,29,42}. Endostatin appeared early on to be a promising candidate for antiangiogenic therapy¹⁶, but challenges with its stability and manufacturing costs delayed clinical development²¹. Interferons (IFNs), which are primarily secreted by activated immune cells, can elicit antiproliferative and proapoptotic effects in tumor ECs. IFN α and IFN β downregulate proangiogenic factors in cancer cells^{89,90} and show antiangiogenic properties in mouse tumor models⁹¹⁻⁹³ and highly angiogenic human cancers⁹⁴. IFN γ directly restrains EC proliferation⁹⁵ and instigates angiostatic macrophage programming⁹⁶. Several IFN-inducible factors, such as IL-12, CXCL9, CXCL10 and CXCL11, also exhibit antiangiogenic activity²⁹. It is tempting to speculate that some of the antitumoral responses in patients treated with immunotherapies may also involve IFN-dependent effects on the tumor vasculature^{95,97,98}.

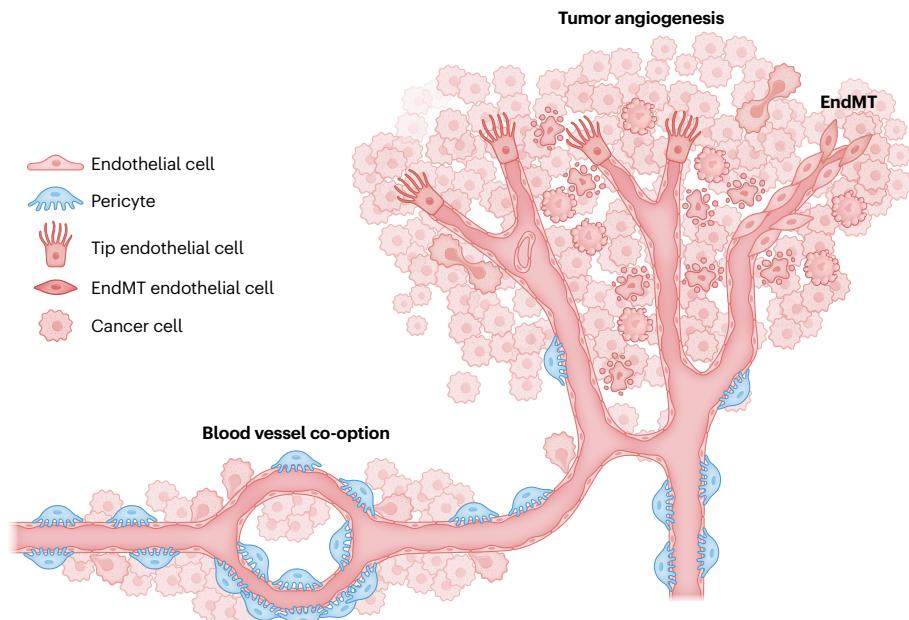
Involvement of accessory cells in tumor angiogenesis

It was initially envisaged that angiogenesis-inducing ligands would be largely expressed by cancer cells as part of their malignant phenotype^{12,36-38}. However, in many tumorigenesis pathways, angiogenesis is sustained, at least partly, by accessory cells recruited to form the heterotypic TME^{29,99} (Fig. 2). These cells promote tumor

Fig. 2 | Accessory cells in tumor angiogenesis. The schematic illustrates signaling in the TME by accessory cells that either stimulate or inhibit tumor angiogenesis. The stimulators (top) include neutrophils/MDSCs, M2-like TAMs, CAFs and T_{reg} cells that cooperatively promote angiogenesis by secreting proangiogenic growth factors (for example, VEGFA, FGF2, CXCL8, CXCL12, Wnt family member 7B (WNT7B), BV8 and PDGFC). Neutrophils/MDSCs and TAMs can also release bioactive MMP9, which liberates VEGFA sequestered and latent in the ECM. Autocrine ANGPT2 signaling in ECs disrupts pericyte-EC

interactions to enable VEGFA-dependent angiogenesis. T cells can modulate angiogenesis indirectly, for example, by programming TAMs to either M2-like (through IL-4) or M1-like (through IFN γ) states. Conversely (bottom), ECs recruit pericytes through PDGFB to stabilize newly formed BVs; in turn, pericytes secrete ANGPT1, which promotes EC survival and quiescence. M1-like TAMs can inhibit angiogenesis through the secretion of CXCL9, CXCL10 and CXCL11, which may act directly on TBVs and also recruit and activate T cells. The multifaceted effects of cancer cells on the programming of these accessory cells are not shown.

angiogenesis by expressing angiogenesis-inducing ligands, including VEGFA, or proteases that release angiogenesis factors from sequestered latent states²⁹.


Induction of the angiogenic switch and the persistence of tumor angiogenesis involve the recruitment of hematopoietic and mesenchymal-lineage cells from proximal tissues and the bone marrow²⁹. Once embedded in the TME, these accessory cells display altered phenotypes and metabolic states in response to tumor-derived cues, often manifesting tumor-promoting capabilities⁹⁹. Both cancer cells and accessory cells can secrete VEGFA in response to hypoxia. Accordingly, selective blockade of human VEGFA only moderately affects vascularization and tumor growth in xenograft models¹¹, whereas dual human/mouse-specific blockade achieves more profound effects⁵¹.

Myelomonocytic cells, including monocytes, monocyte-derived macrophages and tissue-resident macrophages—collectively referred to as tumor-associated macrophages (TAMs)—have long been implicated as positive regulators of tumor angiogenesis^{100,101}. TAMs undergo proangiogenic programming in response to hypoxia and tumor-derived factors^{39,102,103}, acting as a source of VEGFA, other proangiogenic factors and ECM-remodeling proteases^{29,39,40,42,104–106}. They closely interact with nascent TBVs to promote angiogenesis^{79,107–109} and facilitate vascular co-option by invasive cancer cells through their ECM-remodeling capacity¹⁰⁰. Lineage tracing and targeted cell-elimination studies using a *Tek*-regulated genetic system¹⁰⁷ identified a subset of perivascular TAMs overexpressing CD163, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), stabilin 1 (STAB1), mannose receptor C type 1 (MRC1), NRP1, IGF1 and CXCL12 in mammary tumor models¹¹¹. Perivascular TAMs exhibiting different combinations of these markers have been documented in a variety of mouse and human cancer types^{101,112}, where they facilitate angiogenesis, vascular permeability and metastasis^{45,101,108,109,112–114}. The ‘angio-TAMs’—a transcriptionally defined TAM subset with an angiogenic signature involving higher expression of VEGFA, osteopontin (also known as secreted phosphoprotein 1) and versican—was revealed by single-cell RNA sequencing (scRNA-seq) in several human cancer types¹¹⁵. Future studies using targeted cell-depletion

strategies coupled with spatial transcriptomics may provide insights into the functional relationships between angio-TAMs¹¹⁵ and the previously defined perivascular TAMs¹¹².

Granulocytic myeloid cells, including mast cells and neutrophils, are known sources of proangiogenic factors in tumors^{29,116}. Mast cells secrete pro-MMPs and other proteases, including chymase and tryptase, which activate pro-MMPs¹¹⁷. They also release macrophage-attracting cytokines that indirectly promote tumor angiogenesis by recruiting TAMs¹¹⁸. Upon activation, human neutrophils deploy granules containing VEGFA¹¹⁹ and pro-MMP9 unencumbered by tissue inhibitors of metalloproteinases¹²⁰, thus facilitating MMP9 activation and VEGFA mobilization. Neutrophils undergo an aberrant maturation trajectory in tumor-bearing mice and patients with cancer, acquiring proangiogenic functions; in cancer, they are sometimes referred to as myeloid-derived suppressor cells (MDSCs)¹²¹. Neutrophils serve as sources of VEGFA, MMP9, prokineticin 2 (PROK2, also known as BV8), FGF2 and other proangiogenic factors^{43,60,116,120,122–127}. They contribute to the angiogenic switch in RIP1-Tag2 mice, partly through MMP9-mediated VEGFA mobilization, but have no discernable effects on the maintenance of the angiogenic phenotype in more advanced tumor stages^{43,123,124}. Indeed, neutrophils support tumor angiogenesis in concert with other accessory cells, especially TAMs, and eliminating one cell type experimentally can trigger compensatory responses by others^{128,129}. Diverse developmental states exist among tumor-associated neutrophils, each with nuanced angiogenic capacities^{116,130}. For example, SiglecF^{high} neutrophils display upregulated expression of angiogenesis and ECM-remodeling genes in a lung adenocarcinoma model¹³¹. Conversely, IFN β signaling may abate neutrophil expression of proangiogenic factors¹²² and rewire neutrophil granulopoiesis toward an antitumoral and vascular-damaging phenotype^{116,132}.

Lymphocytes and natural killer (NK) cells also modulate tumor angiogenesis²⁹. For example, immunosuppressive regulatory T (T_{reg}) cells increased VEGFA bioavailability in a mouse model of ovarian cancer¹³³. Tumor-induced suppression of NK cells and T cells may

Fig. 3 | Diversity of tumor vascularization: the angiogenic switch and vascular co-option. The schematic illustrates the phenotypic diversity of ECs in TBVs. Tumors may induce sprouting angiogenesis (top), which is primarily induced by VEGFA. Specialized ECs, called tip ECs, sense VEGFA gradients and direct vessel elongation toward sources of VEGFA, which is sustained by proliferative ECs called stalk cells. In angiogenic BVs, some ECs may undergo EndMT (right), a phenotypic state involving proliferative, secretory and profibrotic capabilities, which contributes to vascular dysfunction, inflammation and fibrosis.

Cancer cells may also access the vasculature without inducing angiogenesis (left) through a process termed vascular co-option or perivascular invasion. This mode of tumor vascularization has been observed in both primary and metastatic tumors and may be exacerbated during VEGFA signalling blockade. In conceptualizing the progression of multistage tumorigenesis, these alternative phenotypic states can be viewed as reflecting an angiogenic switch and a perivascular invasive switch in cancer cells.

lead to dysfunctional phenotypes with associated proangiogenic activity^{29,134}. However, lymphocytes and NK cells are most commonly characterized as antiangiogenic²⁹. Indeed, their activation and IFN γ production can elicit antiangiogenic responses in tumors^{95,97,98}.

CAFs contribute to generating a reactive and angiogenic stroma that perpetuates tumor-promoting responses in solid tumors¹³⁵. CAFs have been shown to stimulate the malignant progression of preneoplastic tissue by altering the biology of the epithelium and surrounding vasculature in individuals predisposed to breast cancer due to *BRCA1* mutations¹³⁶. scRNA-seq has uncovered substantial CAF heterogeneity in both mouse and human tumors¹³⁷. In MMTV-PyMT (mouse mammary tumor virus–polyoma middle tumor antigen) mammary tumors, three distinct CAF subpopulations were identified, with one, called vascular CAFs, being highly enriched in genes linked to vascular development and angiogenesis¹³⁸. CAFs produce various proangiogenic factors^{29,41,109,135,139,140}, and the CAF secretome also indirectly enhances tumor angiogenesis by attracting proangiogenic myeloid cells from the systemic circulation through chemokines such as CXCL8 and CXCL12 (refs. 29,135,141). Beyond CAFs, other mesenchymal cells also exhibit proangiogenic activity. Tumors that arise within or near adipocyte-rich tissues, such as breast and ovarian cancers or bone metastases, are exposed to adipocyte-derived factors—collectively termed adipokines—that have proangiogenic functions^{29,142}.

It should be emphasized that most of the above-discussed studies used mouse tumor models as a platform for mechanistic investigations. Although TAM and CAF numbers positively correlate with vascular density in several human cancer types^{143,144}, this association does not necessarily imply a causative role. Interrogating the vascular-modulatory functions of tumor-associated cells in patients with cancer remains challenging owing to the limited availability of pre- and posttreatment biopsy data and, perhaps more critically, a lack of drugs selectively targeting specific accessory cell types in the TME²⁹.

Phenotypic diversity of EC states and tumor vascularization

Classical angiogenesis bioassays⁶² initially suggested that solid tumors would be vascularized by phenotypically homogeneous—albeit aberrant—capillary ECs¹⁴⁵. However, advances in molecular genetics, single-cell analysis and imaging technologies have revealed that tumor ECs exhibit diverse and dynamic states^{146,147}, including abnormally proliferating¹⁴⁵, senescent¹⁴⁸, transdifferentiated¹⁴⁹ and immune-modulatory^{44,150,151} ECs. Tumors can also co-opt quiescent BVs from surrounding tissues² (Fig. 3). The regionally variable stimulation of the endothelium by a plethora of vascular regulatory factors produced by cancer cells and recruited accessory cells in distinct TMEs probably results in states of phenotypic plasticity and heterogeneity pertinent to understanding the complicated responses to antiangiogenic therapies.

A recent review of scRNA-seq datasets has cataloged a constellation of EC states varying across different tumor types and studies¹⁴⁷, probably reflecting the existence of multifunctional, heterogeneous EC phenotypes. Certain EC clusters appear to be conserved across multiple cancer types. For example, the expression of the plasma-lemma vesicle-associated protein (*PLVAP*) gene, induced by VEGFA signaling, identifies potentially angiogenic, metabolically active and immunosuppressive EC clusters. Conversely, EC clusters expressing the atypical chemokine receptor 1 (*ACKR1*) gene may have proinflammatory and immunostimulatory functions¹⁴⁷. These findings, while currently descriptive, may help identify more selective and potentially effective therapeutic targets in the tumor endothelium.

ScRNA-seq analysis of the human lung cancer vasculature has identified ECs with features of normal arterial, postcapillary venule and capillary ECs, alongside subpopulations with differentially activated regulatory states, totaling over a dozen distinct phenotypes¹⁵². Among them, tip ECs display conserved phenotypes in human and mouse lung tumors, suggesting shared mechanisms of VEGFA-induced tip EC

formation. A distinct EC state, termed 'breach' cell, expresses typical tip EC genes along with ECM-remodeling genes. Moreover, the bulk of proliferating ('stalk') ECs could be resolved into several phenotypic states, including 'scavenging' ECs with higher expression of cathepsins and scavenger receptors¹⁵² that may facilitate ECM degradation for vascular invasion in the tumor stroma.

The human lung cancer vasculature exhibits a higher proportion of proliferative ECs compared to the normal lung vasculature^{153,153}. This is consistent with earlier studies of breast and colorectal cancer indicating increased EC proliferation in tumors (3–10%) compared to adjacent normal tissue (0.1–1%), with up to 20% of ECs with a proliferative phenotype at the invasive tumor margins^{154,155}. Notably, lower frequencies of proliferating ECs were observed in human lung and breast cancer compared to mouse models^{152,156}, possibly due to a greater reliance on vascular co-option in human tumors². Nonetheless, both human and mouse tumor ECs exhibit higher RNA content, activation of MYC target genes and increased nucleotide metabolism compared to normal tissue ECs, probably indicative of enhanced transcription and proliferation¹⁵⁷. Metabolic pathway analysis further revealed a shift toward aerobic glycolysis in tumor ECs, which may facilitate rapid ATP production and oxygen transfer to surrounding cells¹⁵⁷.

Tumor ECs can undergo senescence, a potentially reversible cell-cycle arrest state that may precede clearance of dysfunctional cells^{148,158}. A meta-analysis of scRNA-seq datasets indicated that tumor ECs can manifest senescent phenotypes involving upregulated expression of inflammatory mediators, chemokines and adhesion molecules that may facilitate recruitment of protumorigenic inflammatory cells¹⁵⁹. A senescent EC signature negatively correlates with survival and response to immunotherapy in a broad range of cancer types¹⁵⁹. Additionally, in some pathological conditions, subsets of vascular ECs downregulate the expression of junctional proteins (for example, CDH5) and concurrently develop mesenchymal cell features, a process distinct from cellular senescence and termed endothelial-to-mesenchymal transdifferentiation (EndMT)¹⁴⁹. During EndMT, ECs acquire proliferative, secretory, thrombogenic and profibrotic phenotypes that contribute to vascular dysfunction, inflammation and tissue fibrosis. In cancer, EndMT may facilitate the generation of a desmoplastic stroma through increased vascular leakage and ECM deposition, thereby promoting cancer cell motility, invasion and metastasis¹⁴⁹. Accordingly, an EndMT signature is associated with a worse prognosis and therapeutic resistance in pancreatic adenocarcinoma¹⁶⁰.

Another layer of complexity pertains to the immunomodulatory properties of tumor ECs^{150,161}. Chronic exposure to VEGFA and other tumor-derived factors renders ECs unresponsive to proinflammatory stimuli such as TNF and IL-1 β (ref. 161). This anergic EC state involves the downregulation of T cell adhesion receptors and increased expression of molecules that hinder T cell transmigration¹⁶², leading to reduced T cell recruitment into tumors^{150,161}. ScRNA-seq analysis revealed significant downregulation of genes related to antigen presentation, immune-cell chemotaxis and immune-cell trafficking in human lung and mammary tumor ECs compared to healthy tissues^{156,157}. Thus, TBVs can be immunosuppressive^{150,161}. Nevertheless, solid tumors can occasionally develop high endothelial venules (HEVs), specialized vessels that enable T cell and B cell transmigration in lymphoid organs. In some tumors, HEVs contribute to generating T cell-rich immune aggregates similar to tertiary lymphoid structures, which are associated with anti-tumor immunity and a more favorable prognosis^{151,161}. HEVs, induced by IFN γ , TNF and lymphotoxins produced by activated lymphocytes and NK cells, are often found at the tumor periphery and appear to form independently of angiogenesis, potentially through co-option of postcapillary venules and progressive T cell accrual^{151,163}.

As noted above, human tumors can vascularize both through sprouting angiogenesis and co-option of preexisting vessels². A third mode of tumor vascularization has been observed in early-stage colorectal carcinogenesis, where crypt hyperplasias vascularize

by attracting venous ECs from adjacent, nontransformed epithelial regions in a process that is dependent on APLN but independent of VEGFA¹⁶⁴. This represents an unconventional mode of neovascularization distinct from both vessel co-option and sprouting angiogenesis, as it involves crypt-ward migration of tube-forming ECs in the absence of EC proliferation; its generality remains to be ascertained.

Although most tumors contain both angiogenic and co-opted BVs, considerable variation is observed, with tumors in highly vascularized organs (for example, lung, brain, liver and lymph node) often displaying moderate-to-high degrees of vascular co-option. For example, the analysis of lung metastases from primary tumors of the breast, colon and kidney found evidence of vessel co-option in approximately 80% of the cases¹⁶⁵. In low-grade gliomas of the brain, cancer cells co-opt existing vessels without disrupting the blood–brain barrier². However, high-grade gliomas often display mixed angiogenic and co-opted vasculatures. The latter involves 'perivascular cuffing', a process in which cancer cells surround brain capillaries to replace pericytes and astrocytes, thus disrupting the blood–brain barrier¹⁶⁶. Perivascular spreading and dislodging of pericytes have also been observed in the initial steps of brain metastasis of mouse lung and mammary tumors¹⁶⁷. The epithelial-to-mesenchymal transition of cancer cells may facilitate perivascular invasion during the initial steps of metastatic colonization^{168–170}. Overt metastatic outgrowth, however, is often associated with vascular remodeling and sprouting angiogenesis^{2,171,172}.

Regardless of the mechanisms involved, co-opted TBVs are distinct from irregular and chaotic angiogenic TBVs². ScRNA-seq analysis of mouse tumors with spontaneous or induced vessel co-option corroborated earlier histological findings that co-opted tumor ECs are largely quiescent, lack both tip and proliferating cells and, perhaps unexpectedly, exhibit transcriptomic profiles reminiscent of normal ECs¹¹⁰. Notably, specific protein biomarkers distinguishing co-opted tumor ECs from normal tissue ECs are currently unavailable. Intriguingly, tumor regions with co-opted BVs have occasionally been found to be hypoxic and with upregulated VEGFA expression despite a lack of evidence for angiogenesis¹⁷³. These results suggest that ill-defined mechanisms, possibly involving accessory cells such as angiostatic macrophages¹¹⁰, render co-opted BVs recalcitrant to hypoxia-induced, VEGFA-mediated proangiogenic signaling, potentially explaining the insensitivity of some tumors to VEGFA pathway inhibitors¹⁶⁹.

Development of angiogenesis inhibitors for cancer therapy

The discovery and functional validation of VEGFA signaling in cancer were concurrent with the pioneering of mechanism-based targeted therapies aimed at oncogenes, which demonstrated the clinical potential of biological therapies for treating cancer¹⁷⁴. These milestones paved the way for the development, clinical testing and approval of drugs that inhibit tumor angiogenesis by targeting VEGFA/VEGFR and additional signaling pathways^{17,18,35}.

The VEGFA monoclonal antibody bevacizumab (Avastin) gained initial approval for metastatic colorectal cancer and is now approved for treating other tumor types, including lung, renal, cervical, ovarian and liver cancer, in combination with other agents^{13–15,17,18}. Adding bevacizumab to standard-of-care therapy in clinical trials typically produced delayed time to progression with demonstrable, but generally modest, overall survival benefits^{17,18}. However, it showed no survival benefits in patients with other tumor types, such as metastatic breast cancer¹⁷⁵. Distinct VEGF-targeting biologics have also been approved, including ramucirumab (a VEGFR2 monoclonal antibody) for gastric and lung cancer^{176,177} and afibbercept (a VEGF trap) for colorectal cancer¹⁷⁸. Ramucirumab and afibbercept can block multiple VEGF family members, such as placental growth factor (PIGF) and VEGFB, although the combined benefits of neutralizing these factors along with VEGFA remain unclear¹⁸.

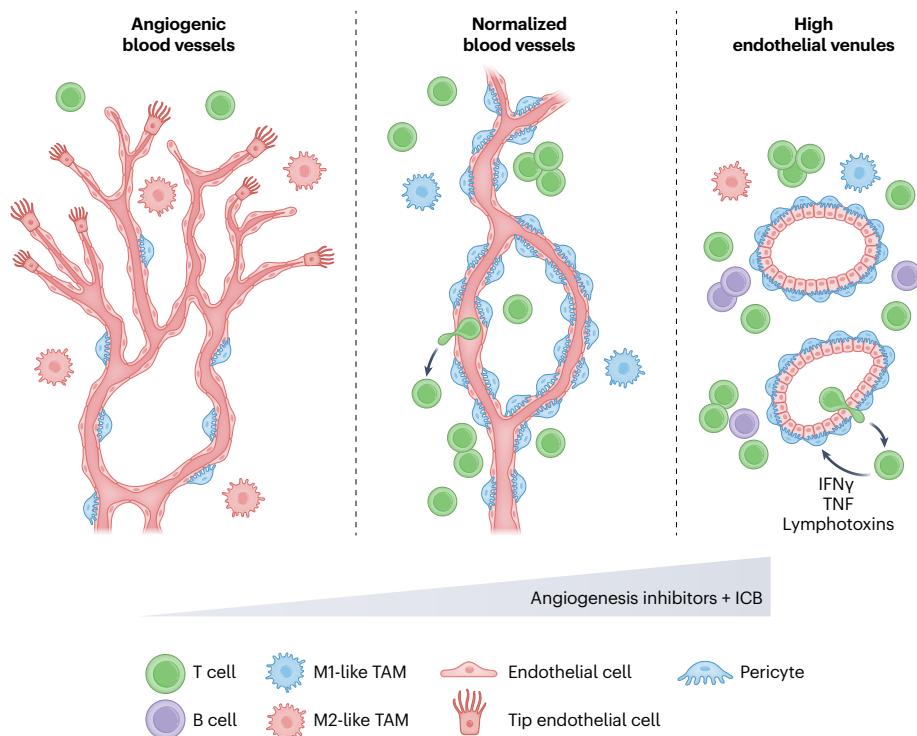
Bevacizumab rapidly reduces blood flow in human tumors^{179–181} by inhibiting sprouting angiogenesis, leading to decreased microvesSEL density, and suppressing VEGFA-induced nitric oxide production, causing vasoconstriction¹⁸². Paradoxically, VEGFA blockade can also transiently improve blood flow through ‘vascular normalization’, shifting the balance from growth to maturation of TBVs^{181,183,184}. The consequences of this remodeling are fewer vascular sprouts, increased pericyte coverage, reduced vascular leakage, improved blood perfusion and enhanced drug delivery through the systemic circulation. A theory that accommodates both reduced vascularization and improved blood flow after VEGFA blockade envisions that vascular normalization is a dynamic response governed by the degree and kinetics of VEGFA signaling inhibition¹⁸⁴. A ‘normalization window’ has been identified in mouse tumor models, which can be extended by varying the dosing of VEGF pathway inhibitors^{184,185}. As a single agent, bevacizumab counteracts VEGFA-induced vascular permeability in human glioblastoma and helps control cerebral edema, thus providing benefits despite its inconsequential effects on tumor progression¹⁸⁶. Moreover, improved blood flow and drug delivery may contribute to the additive clinical benefits of combining VEGFA inhibition with chemotherapy, for example, in colorectal and lung cancers^{14,15}. While the mechanisms by which blocking VEGFA improves tumor response to chemotherapy are incompletely understood^{17,18}, VEGFA signaling stimulates vascular ECs and TAMs to adopt immunosuppressive phenotypes that limit the efficacy of chemotherapy and other anticancer agents^{44,150,187}. Beyond VEGF inhibition, additional strategies can demonstrably normalize TBVs, including enforced expression of semaphorin 3A (SEMA3A)¹⁸⁸, delivery of agonists of the lymphotxin-β receptor (LTβR)¹⁸⁹, blocking ANGPT2 (refs. 79,80,85) or activating TIE2 (ref. 190), and inhibiting leucine-rich α-2-glycoprotein-1 (LRG1)¹⁹¹.

Recent scRNA-seq studies have provided new and potentially clinically relevant insights into the effects of VEGFA signaling inhibition in mouse tumor models^{152,192}. The analysis of human tumor xenografts revealed reduced numbers of tip ECs after afibbercept treatment, indicating acute inhibition of sprouting angiogenesis¹⁹². However, stalk-like cells persisted, suggesting limited effects on preexisting TBVs. Another study using the VEGFR2-specific antibody DC101 (a ramucirumab surrogate) in a lung tumor model showed that tip and breach ECs were most sensitive to the treatment, whereas stalk ECs were less affected¹⁵². Intriguingly, DC101 increased gene signatures linked to mature vascular functions, including an activated postcapillary vein phenotype¹⁵² characteristic of HEVs¹⁵¹. Whether these changes represent transient vascular normalization or transition from angiogenesis to vessel co-option remains to be determined.

Several small-molecule receptor tyrosine kinase inhibitors, with broader specificity than VEGFA/VEGFR2-targeted biologics, exhibit antiangiogenic and antitumoral effects¹⁸. By primarily targeting both VEGFRs and PDGFRs, sorafenib and sunitinib disrupt TBVs by dissociating PDGFR-dependent pericytes from newly formed EC tubes, rendering them more sensitive to VEGFR2 inhibition⁵⁸. These inhibitors are approved as single agents for treating various cancer types, including pancreatic neuroendocrine tumors, gastrointestinal stromal tumors, hepatocellular carcinoma and renal cancer^{75,76}. Other inhibitors, including axitinib, apatinib, lenvatinib, cabozantinib, pazopanib and regorafenib, block VEGFRs and other tyrosine kinases, including PDGFRs, KIT, TIE2, FGFRs and cMET. They are approved for colorectal and renal cancer and hepatocellular carcinoma, often in the advanced or metastatic setting¹⁸. Small-molecule mTOR inhibitors (rapalogs)—temsirolimus and everolimus—produce antiangiogenic effects by interfering with the PI3K–AKT–mTOR pathway¹⁹³. They are approved for the treatment of advanced renal cell cancer, pancreatic neuroendocrine tumors and breast adenocarcinoma. Of note, tumors can rapidly revascularize upon therapy withdrawal using empty basement membrane sleeves left behind by regressed TBVs^{56,57}. For example, discontinuation of sunitinib treatment in patients with renal cell

carcinoma resulted in brisk tumor revascularization sustained by highly proliferative ECs¹⁹⁴.

As noted above, ANGPTs have been investigated as antiangiogenic targets^{77,195}. The ANGPT1/2-targeting peptibody trebananib was the first to enter clinical testing. While three clinical trials in patients with advanced ovarian cancer failed to show benefit¹⁹⁵, neoadjuvant trebananib improved event-free survival in high-risk, early-stage breast cancer¹⁹⁶. ANGPT1 and ANGPT2 have contrasting roles in tumor angiogenesis⁸⁰, so blocking the vascular-normalizing effects of ANGPT1 might limit the benefits of targeting ANGPT2 in some contexts^{79,85}. The bispecific VEGFA/ANGPT2 antibody vanucizumab was compared to bevacizumab in combination with chemotherapy in metastatic colorectal cancer. Although vanucizumab was not superior to bevacizumab in the general population¹⁹⁷, a retrospective analysis showed potentially meaningful benefits in patients with higher ANGPT2 levels in plasma and tumors¹⁹⁸, in agreement with preclinical studies^{82–84}.


The regulation of tumor angiogenesis is complex and multifactorial, and so are the responses to angiogenesis inhibitors^{61,199} and their associated toxicities¹⁸. Its targeting continues to be beneficial in combination therapies, as further elaborated below.

Intrinsic and adaptive resistance to antiangiogenic therapy

The observations that antiangiogenic drugs produced only transitory efficacy in preclinical and clinical trials spurred investigations into the underlying basis for relapse. Several modes of intrinsic and adaptive resistance to antiangiogenic therapy have been revealed in mouse tumor models^{61,199}. Moreover, the prevalence of vascular co-option without evident angiogenesis in many human cancers may help explain the relatively modest clinical benefits produced by angiogenesis inhibitors².

In early studies, recombinant endostatin could fully regress rapidly growing transplant tumors without evidence of posttreatment recurrence, spearheading the hypothesis that antiangiogenic therapy would not lead to resistance¹⁶. However, subsequent work in other tumor models has revealed more nuanced antiangiogenic and antitumoral activities of endostatin²⁰⁰. Likewise, clinically approved agents that efficiently quench VEGFA signaling generally achieved partial or transient responses in preclinical models, especially GEMMs of cancer, suggestive of intrinsic or acquired/adaptive resistance^{2,17,61,199}.

Redundancy in proangiogenic signaling can explain findings of unabated or rebound angiogenesis occurring in the face of VEGFA signaling inhibition^{61,199}. Compensatory (adaptive) upregulation of proangiogenic growth factors has been well documented in mouse tumor models following anti-VEGFA therapy. Inhibition of angiogenesis by DC101 in RIP1-Tag2 mice led to hypoxic upregulation of FGF2 and tumor revascularization. Combining DC101 with FGF2 blockade extended the temporal duration of the antiangiogenic response and delayed tumor progression⁷⁰. FGFR inhibition also decreased the vascular density and improved tumor response to anti-VEGFA therapy in a mouse model of obesity-associated breast cancer⁷¹. In patients with metastatic colorectal cancer receiving bevacizumab with chemotherapy, serum FGF2 levels increased above baseline before the radiographic development of resistance²⁰¹. Brivanib, a dual VEGFR/FGFR inhibitor, showed efficacy in RIP1-Tag2 mice following resistance to sorafenib²⁰². In patients with advanced hepatocellular carcinoma resistant to sorafenib, brivanib had demonstrable activity in approximately 10% of the patients, although it did not improve overall survival compared to placebo²⁰³. Besides FGF signaling, ANGPT2 can limit the efficacy of anti-VEGFA therapy in cancer. Dual VEGFA and ANGPT2 inhibition provides additive benefits in tumors that upregulate endothelial ANGPT2 when VEGFA signaling is blocked^{83,84}. ANGPT2 may also mediate refractoriness to anti-VEGFA therapy ab initio. Among patients with metastatic colorectal cancer who received bevacizumab combined with chemotherapy, low pretreatment serum levels of ANGPT2 were associated with a better

Fig. 4 | Harnessing vascular-immune crosstalk for cancer therapy.

Angiogenesis inhibitors—alone or in combination with ICB—can reprogram angiogenic TBVs into ‘quasi-normal’ states and elicit the formation of HEVs from postcapillary ECs. These reprogrammed TBVs facilitate, rather than limit, T cell and B cell infiltration and activation in the TME. Factors produced by de novo-

recruited T cells, such as IFN γ , TNF and lymphotaxins, further stabilize T cell-permissive BVs and HEVs, enabling the therapeutic activity of ICB in particular and possibly immunotherapy in general. Combinations of VEGF pathway inhibitors and ICB are producing added therapeutic benefits in an increasing number of preclinical and clinical cancer trials.

response²⁰⁴. PDGFs, PROK2, IL-17 and CXCL8 have also been mechanistically implicated in the promotion of VEGFA-independent tumor angiogenesis through direct or indirect effects on the vasculature^{61,199}. Additional cytokines and growth factors, such as PIGF, VEGFA, VEGFD, HGF, IL-6 and CXCL12, may serve as predictive biomarkers of response to antiangiogenic therapy, irrespective of their potentially direct involvement in mediating resistance^{201,205,206}.

A second mode of resistance involves recruitment or *in situ* reprogramming of accessory cells^{61,199}. For example, therapy-induced upregulation of colony-stimulating factor 3 (CSF3), CXCL8, CXCL12 and chemokine ligand 2 (CCL2) fosters tumor infiltration by neutrophils/MDSCs and TAMs, which sustain VEGFA-independent angiogenesis through growth factors and proteases that counterbalance the loss of VEGFA signaling in ECs^{60,61,124,129,187,207}. Similarly, CAFs release growth factors that may rescue tumor angiogenesis and growth in the face of VEGFA signaling blockade^{208,209}. In VEGFA-depleted tumors of RIP1-Tag2 mice, CAFs upregulate periostin (POSTN), a matricellular protein that attracts and retains proangiogenic TAMs. Genetic inactivation of *Postn* or TAM ablation with a CSF1 receptor (CSF1R) antibody inhibited tumor revascularization and progression during extended VEGFA blockade²¹⁰. These preclinical findings should incentivize clinical testing of combinations of angiogenesis and CSF1R inhibitors in patients with cancer¹⁰⁰.

A third mode of resistance can emerge in treated tumors, whereby cancer cells adapt metabolically to sustain growth despite restricted nutrient and oxygen supply¹⁹⁹. For example, hepatocellular cancer cells increase autophagy, a prosurvival response mediated by the activation of the AKT-mTOR pathway in response to sorafenib-induced hypoxia^{211,212}. Cancer cells in treated tumors may also engage in ‘metabolic symbiosis’, a process whereby hypoxic cancer cells in avascular tumor areas import glucose and export lactate, whereas normoxic cells near surviving or co-opted TBVs import and use lactate^{213–215}. Metabolic reprogramming of cancer cells during antiangiogenic therapy may even

exacerbate their malignant behavior in mouse tumor models. For example, sunitinib withdrawal led to accelerated tumor regrowth fueled by a metabolic switch involving increased uptake and metabolism of fatty acids in the cancer cells²¹⁶. Inhibition of fatty acid uptake, storage or metabolism impaired cancer cell survival and tumor regrowth^{217,218}, suggesting potential for cotargeting with the lipase inhibitor orlistat²¹⁶.

A fourth form of resistance involves progression to states of heightened local invasion, whereby cancer cells grow by co-opting the quiescent vasculature of local tissues without the need for neovascularization^{165,219–223}. This phenomenon has been clearly documented in human glioblastoma^{223,224}. However, a large meta-analysis of phase 3 trials involving more than 4,000 patients with colorectal, breast, renal and pancreatic cancer indicated that disease progression was not accelerated by bevacizumab treatment²²⁵. Moreover, evidence is still lacking that enhanced cancer cell invasion along co-opted BVs accelerates tumor progression in most patients treated with VEGFA inhibitors^{18,199,223,226}. In mouse cancer models, increased perivascular tumor invasion upon VEGFA signaling blockade was facilitated by hypoxia-induced epithelial-to-mesenchymal transition and upregulation of the HGF receptor cMET^{227–229}. However, cMET inhibitors have not shown clinical efficacy in tumors that lack activating mutations or amplifications of the *MET* gene, arguing against a pivotal role of cMET in tumor invasion and metastasis²³⁰. Nevertheless, clear improvements in progression-free survival have not consistently translated into extended overall survival in several phase 3 trials²²³, suggesting therapy-induced mechanisms of tumor adaptation.

Harnessing vascular-immune crosstalk for cancer therapy

The emergence of immunotherapies as a new dimension to cancer therapeutics has been tempered by the realization that many solid tumors erect multifaceted barriers to T cell infiltration and function²³¹.

Among these, the aberrant tumor vasculature hyperstimulated by chronic angiogenic signaling can express immunosuppressive factors that impede T cells seeking to infiltrate tumors^{150,161,232}. Concordantly, vascular remodeling by angiogenesis inhibitors can, in some cases, demonstrably attenuate angiogenesis-associated immunosuppression to facilitate the efficacy of antitumor immunity. In preclinical models and clinical trials, angiogenesis inhibitors have been found beneficial in combination with immune checkpoint blockade (ICB), namely, programmed cell death protein 1 (PD-1) or programmed death ligand 1 (PD-L1) antibodies, and other forms of immunotherapy—a treatment modality that we here refer to as antiangiogenic immunotherapy⁹⁸ (Fig. 4).

Antiangiogenic therapy has recently witnessed a clinical renaissance thanks to successful combinations of angiogenesis inhibitors and ICB^{18,161,231}. The phase 3 KEYNOTE-426 trial demonstrated the superiority of axitinib and pembrolizumab (a PD-1-blocking antibody) over standard-of-care sunitinib in advanced renal cell carcinoma²³³. Other phase 3 trials combining axitinib or bevacizumab with PD-1 or PD-L1 antibodies have shown clinical improvements compared to sunitinib in the same cancer type^{234,235}. In phase 3 trials with treatment-naïve patients, bevacizumab plus atezolizumab (a PD-L1-blocking antibody) was superior to sorafenib in advanced hepatocellular carcinoma (IMbrave150), and atezolizumab improved clinical response to bevacizumab plus chemotherapy in nonsquamous non-small cell lung cancer (IMpower150)^{18,161,236}. As a result of these and other trials, different combinations of angiogenesis inhibitors and ICB have been approved as first- or second-line treatments for advanced renal, liver and lung cancers^{18,98,161}. Promising results have also been obtained in other cancer types, such as endometrial and colorectal cancer^{237,238}. Interestingly, recombinant endostatin improved tumor response to ICB in a pilot clinical study in patients with pretreated lung cancer²³⁹.

ICB has been shown to prevent early exhaustion of T cells and has demonstrable clinical activity in several cancer types, but these benefits are often limited to patients with tumors containing preexisting T cell infiltrates²³¹. Given that angiogenic TBVs typically suppress T cell infiltration, pharmacologically impaired angiogenic signaling may improve T cell trafficking by normalizing TBVs or promoting HEV formation^{98,150,161,232}. Bulk and scRNA-seq analyses of ECs from mouse tumors exposed to antiangiogenic agents have revealed upregulation of genes involved in immune-cell chemotaxis, T cell adhesion and trafficking, and antigen presentation^{85,152,192,240}. Concurrent PD-1 or PD-L1 blockade sustains the activation of T cells and protects them from the inhibitory effect of PD-L1, which becomes upregulated in cancer cells and accessory cells, including ECs, in response to T cell-derived IFN γ (refs. 85,241). Because IFN γ is angiostatic, it further contributes to sustaining vascular normalization^{242,243}. Moreover, PD-L1 blockade reprograms the tumor vasculature, tilting it toward a proinflammatory and antigen-presenting cell-like state that can facilitate T cell recruitment²⁴⁴. This feed-forward loop, initiated by antiangiogenic therapy and perpetuated through ICB, improved tumor control in multiple models, including GEMMs of cancer refractory to either monotherapy^{85,241,245,246}. Interventions limiting angiogenic signaling, such as VEGFA or ANGPT2 blockade^{85,241,245,247–251}, targeting TNF-family factors to the tumor vasculature^{189,252,253}, or enhancing EC–pericyte interactions^{191,254}—among other approaches^{255–258}—demonstrably enhanced ICB outcomes in mice.

The presence of HEVs in certain human tumors is associated with better responses to ICB^{151,161}. Congruently, in preclinical models, the inhibition of angiogenic signaling, especially when combined with ICB, induces peri- and intratumoral HEV formation¹⁵¹, where circulating T cells preferentially accumulate²⁵⁹. T cells extravasating in HEV-rich areas mature into PD-1⁺TCF1 (T cell factor 1)⁺CD8⁺ T cell progenitors that eventually differentiate into T effector cells¹⁶³. In turn, tumors require sustained T cell and NK cell-derived signals, namely IFN γ and

lymphotoxins, to maintain HEVs. Given that vascular normalization in response to antiangiogenic therapy facilitates extravasation and perivascular accumulation of T cells^{85,98,150,161,232}, it seems likely that the so-called normalized TBVs also encompassed HEVs in studies in which HEVs were not assessed.

In some cases, longer-term analysis of clinical trials has revealed more limited efficacy of antiangiogenic immunotherapy than seen in interim reports, and evidence is emerging that certain patient subgroups vary in clinical responses. Thus, in the phase 3 IMmotion151 trial, atezolizumab plus bevacizumab showed trends of improved survival versus sunitinib only in those patients whose renal cell tumors had pretreatment transcriptomic profiles indicative of T effector or proliferative states²⁶⁰. In the IMpower150 lung adenocarcinoma trial, subgroup analysis showed no survival gains by atezolizumab plus bevacizumab and chemotherapy, compared to bevacizumab and chemotherapy, in patients whose tumors had wild-type *KRAS* alleles²⁶¹. Moreover, it was unclear whether bevacizumab contributed to clinical response in the general population, although a modest survival advantage was seen in patients with mutant *KRAS* tumors²⁶¹. These clinical data are suggestive of complex mechanisms mediating intrinsic or adaptive resistance to antiangiogenic immunotherapy and echo observations in patients treated with other ICB combinations²³¹. Predictive biomarkers of response are emerging that appear to largely overlap with those identified previously for ICB; such biomarkers need to be evaluated in prospective clinical trials. A high neutrophil-to-lymphocyte ratio was predictive of poor response in patients with renal cell carcinoma treated with axitinib plus ICB²⁶². A meta-analysis of 30 tumor types, which used transcriptional profiles to stratify patients based on baseline angiogenic and immune activity gene sets, concluded that angiogenic activity and T cell immunity are inversely correlated across tumors²⁶³. Tumors could be classified into three angio-immune subtypes: high angiogenesis/low T cell activity (C1), low angiogenesis/high T cell activity (C3) and intermediate states (C2). Features in the C3 group included a higher pericyte-to-EC ratio (indicative of more mature or normalized TBVs) and higher inflammation scores, including T effector cell functions. Interestingly, in the Javelin Renal 101 clinical trial, patients with renal cell carcinoma who were categorized into the C3 angio-immune subtype had remarkable responses to the combination of axitinib and avelumab (a PD-L1 antibody)^{263,264}. Besides baseline features predictive of response, mechanisms of adaptive resistance to antiangiogenic immunotherapies are currently being elucidated in mouse tumor models. For example, in a preclinical GEMM of lung adenocarcinoma, antiangiogenic therapy facilitated tumor infiltration by immunosuppressive T_{reg} cells, which expressed higher PD-1 levels than other T cell subsets²⁶⁵. A PD-1 antibody preferentially bound to and activated the T_{reg} cells, thereby limiting the efficacy of antiangiogenic immunotherapy. Disrupting T_{reg} cell survival through TAM elimination unleashed the efficacy of antiangiogenic immunotherapy²⁶⁵.

VEGFA can have other immunosuppressive functions in the TME that are independent of its effects on TBVs⁴⁴. VEGFA can promote the recruitment of circulating monocytes that differentiate into immunosuppressive TAMs^{46,266}, impair dendritic cell maturation²⁶⁷ and induce T cell exhaustion²⁶⁸. VEGFA induces tumor-infiltrating VEGFR2-expressing CD8⁺ T cells to express inhibitory immune checkpoints through the VEGFR2–PLC γ –calcineurin–NFAT (nuclear factor of activated T cells) pathway, thereby promoting T cell exhaustion²⁶⁸. Accordingly, genetic inactivation of *Vegfr2* in T cells relieved T cell exhaustion in a colorectal cancer model²⁶⁹. VEGFA can also directly promote T_{reg} cell expansion in tumor-bearing mice and patients with cancer²⁷⁰. Collectively, these findings underscore the multifaceted role of VEGFA in the modulation of tumor-associated immunosuppression^{44,150} and may help explain the therapeutic benefits of inhibiting angiogenic signaling in combination with therapeutic strategies aimed to stimulate immune responses against cancer^{98,161,240,251}.

Concluding remarks

Angiogenesis has, on the one hand, been validated as a functional hallmark of cancer and a new drug target and, on the other hand, conceptually expanded in scope to embrace diverse functions well beyond the supply of oxygen and nutrients to tumors. An emerging complexity lies in the heterogeneity of tumor ECs and BVs, revealed in part by single-cell analysis and mechanistic investigations in tumor models, which have illustrated far more phenotypic states than those envisaged in earlier studies. Further delineating the heterogeneity of EC states and vascularization patterns in tumors—and their significance for tumorigenesis and consequentiality for anticancer therapy—stands as an important challenge for the future. Most prominent is the realization that tumor vascularization can also be accomplished through the co-option of quiescent BVs. The potential significance of vascular co-option is reflected in the unanticipated occurrence of resistance to angiogenesis inhibitors, once buoyed by the hope that ECs, being chronically proliferative and yet genetically stable, would not be subject to therapeutic resistance.

A silver lining for angiogenesis inhibitors in cancer therapy is their capability to remodel the angiogenic tumor vasculature into a state of quasi-normality by pruning angiogenic ECs while leaving pericyte-covered ECs in a less dense vascular network more permissive to T cell extravasation. As a result, angiogenesis inhibitors are showing benefits in combination with immunotherapies that bolster T cell function. Because angiogenic scores based on transcriptional profiling may not accurately distinguish angiogenic and co-opted vessels, a key question for the future is whether tumors with varying ratios of angiogenic and nonangiogenic BVs—determined, for example, by spatial transcriptomics—respond differently to antiangiogenic immunotherapy. Co-opted vasculatures are suspected to be largely insensitive to VEGFA pathway inhibitors, such that tumors with a prevalence of quiescent co-opted BVs are not expected to benefit from therapeutic targeting unless inhibition of VEGFR signaling alleviates tumor-associated immunosuppression independently of its effects on TBVs. These broader conceptual horizons for the biology of tumor vascularization and angiogenic signaling solidify their importance both for tumorigenesis and malignant progression and for incorporating mechanism-guided drugs into combinatorial therapeutic strategies that more broadly benefit patients with cancer.

References

1. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. *Cell* **146**, 873–887 (2011).
2. Kuczynski, E. A., Vermeulen, P. B., Pezzella, F., Kerbel, R. S. & Reynolds, A. R. Vessel co-option in cancer. *Nat. Rev. Clin. Oncol.* **16**, 469–493 (2019).
3. Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. *Science* **369**, eaax4063 (2020).
4. Goldmann, E. The growth of malignant disease in man and the lower animals, with special reference to the vascular system. *Proc. R. Soc. Med.* **1**, 1–13 (1908).
5. Ribatti, D., Vacca, A. & Dammacco, F. The role of the vascular phase in solid tumor growth: a historical review. *Neoplasia* **1**, 293–302 (1999).
6. Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown–Pearce rabbit epithelioma transplant as seen in the transparent ear chambers. *Am. J. Roentgenol.* **32**, 891–899 (1939).
7. Algire, G. H. & Chalkley, H. W. Vascular reactions of normal and malignant tissue in vivo. *J. Natl Cancer Inst.* **6**, 73–85 (1945).
8. Greenblatt, M. & Shubi, P. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. *J. Natl Cancer Inst.* **41**, 111–124 (1968).
9. Folkman, J. Tumor angiogenesis: therapeutic implications. *N. Engl. J. Med.* **285**, 1182–1186 (1971).
10. Gimbrone, M. A. Jr, Leapman, S. B., Cotran, R. S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. *J. Exp. Med.* **136**, 261–276 (1972).
11. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. *Nature* **362**, 841–844 (1993).
12. Grunstein, J., Roberts, W. G., Mathieu-Costello, O., Hanahan, D. & Johnson, R. S. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. *Cancer Res.* **59**, 1592–1598 (1999).
13. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. *N. Engl. J. Med.* **349**, 427–434 (2003).
14. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. *N. Engl. J. Med.* **350**, 2335–2342 (2004).
15. Sandler, A. et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. *N. Engl. J. Med.* **355**, 2542–2550 (2006).
16. Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. *Nature* **390**, 404–407 (1997).
17. Jayson, G. C., Kerbel, R., Ellis, L. M. & Harris, A. L. Antiangiogenic therapy in oncology: current status and future directions. *Lancet* **388**, 518–529 (2016).
18. Cao, Y., Langer, R. & Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. *Nat. Rev. Drug Discov.* **22**, 476–495 (2023).
19. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. *Nature* **339**, 58–61 (1989).
20. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. *Cell* **86**, 353–364 (1996).
21. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. *Nat. Rev. Cancer* **3**, 401–410 (2003).
22. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. *Cell* **100**, 57–70 (2000).
23. Hanahan, D. Heritable formation of pancreatic β -cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. *Nature* **315**, 115–122 (1985).
24. Smith-McCune, K., Zhu, Y. H., Hanahan, D. & Arbeit, J. Cross-species comparison of angiogenesis during the premalignant stages of squamous carcinogenesis in the human cervix and K14-HPV16 transgenic mice. *Cancer Res.* **57**, 1294–1300 (1997).
25. Consolino, L. et al. Functional imaging of the angiogenic switch in a transgenic mouse model of human breast cancer by dynamic contrast enhanced magnetic resonance imaging. *Int. J. Cancer* **139**, 404–413 (2016).
26. Guidi, A. J., Fischer, L., Harris, J. R. & Schnitt, S. J. Microvessel density and distribution in ductal carcinoma in situ of the breast. *J. Natl Cancer Inst.* **86**, 614–619 (1994).
27. Smith-McCune, K. K. & Weidner, N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. *Cancer Res.* **54**, 800–804 (1994).
28. Hlatky, L., Hahnfeldt, P. & Folkman, J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. *J. Natl Cancer Inst.* **94**, 883–893 (2002).
29. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. *Nat. Rev. Cancer* **17**, 457–474 (2017).
30. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. *Science* **219**, 983–985 (1983).

31. Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. *Biochem. Biophys. Res. Commun.* **161**, 851–858 (1989).

32. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. *Science* **246**, 1309–1312 (1989).

33. Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. *Science* **246**, 1306–1309 (1989).

34. Pérez-Gutiérrez, L. & Ferrara, N. Biology and therapeutic targeting of vascular endothelial growth factor A. *Nat. Rev. Mol. Cell Biol.* **24**, 816–834 (2023).

35. Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. *Nat. Rev. Mol. Cell Biol.* **17**, 611–625 (2016).

36. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. *Nature* **359**, 843–845 (1992).

37. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. *Nature* **359**, 845–848 (1992).

38. Inoue, M., Hager, J. H., Ferrara, N., Gerber, H.-P. & Hanahan, D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis. *Cancer Cell* **1**, 193–202 (2002).

39. Lewis, J. S., Landers, R. J., Underwood, J. C., Harris, A. L. & Lewis, C. E. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. *J. Pathol.* **192**, 150–158 (2000).

40. Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. *Nature* **456**, 814–818 (2008).

41. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. *Cell* **94**, 715–725 (1998).

42. Mason, S. D. & Joyce, J. A. Proteolytic networks in cancer. *Trends Cell Biol.* **21**, 228–237 (2011).

43. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. *Nat. Cell Biol.* **2**, 737–744 (2000).

44. Zhang, Y. & Brekken, R. A. Direct and indirect regulation of the tumor immune microenvironment by VEGF. *J. Leukoc. Biol.* **111**, 1269–1286 (2022).

45. Freire Valls, A. et al. VEGFR1 $^+$ metastasis-associated macrophages contribute to metastatic angiogenesis and influence colorectal cancer patient outcome. *Clin. Cancer Res.* **25**, 5674–5685 (2019).

46. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. *Blood* **87**, 3336–3343 (1996).

47. Xu, Z. et al. Inhibition of VEGF binding to neuropilin-2 enhances chemosensitivity and inhibits metastasis in triple-negative breast cancer. *Sci. Transl. Med.* **15**, eadff1128 (2023).

48. Lu, K. V. et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. *Cancer Cell* **22**, 21–35 (2012).

49. Noguera-Troise, I. et al. Blockade of DLL4 inhibits tumour growth by promoting non-productive angiogenesis. *Nature* **444**, 1032–1037 (2006).

50. Ridgway, J. et al. Inhibition of DLL4 signalling inhibits tumour growth by deregulating angiogenesis. *Nature* **444**, 1083–1087 (2006).

51. Liang, W.-C. et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. *J. Biol. Chem.* **281**, 951–961 (2006).

52. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. *Nature* **454**, 656–660 (2008).

53. Pan, Q. et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. *Cancer Cell* **11**, 53–67 (2007).

54. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. *Proc. Natl Acad. Sci. USA* **93**, 14765–14770 (1996).

55. Huang, J. et al. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. *Proc. Natl Acad. Sci. USA* **100**, 7785–7790 (2003).

56. Inai, T. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. *Am. J. Pathol.* **165**, 35–52 (2004).

57. Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. *J. Clin. Invest.* **116**, 2610–2621 (2006).

58. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. *J. Clin. Invest.* **111**, 1287–1295 (2003).

59. Raza, A., Franklin, M. J. & Dudek, A. Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis. *Am. J. Hematol.* **85**, 593–598 (2010).

60. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b $^+$ Gr1 $^+$ myeloid cells. *Nat. Biotechnol.* **25**, 911–920 (2007).

61. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. *Nat. Rev. Cancer* **8**, 592–603 (2008).

62. Nowak-Sliwinska, P. et al. Consensus guidelines for the use and interpretation of angiogenesis assays. *Angiogenesis* **21**, 425–532 (2018).

63. Maciag, T., Cerundolo, J., Ilsley, S., Kelley, P. R. & Forand, R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. *Proc. Natl Acad. Sci. USA* **76**, 5674–5678 (1979).

64. Maciag, T., Mehlman, T., Friesel, R. & Schreiber, A. B. Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. *Science* **225**, 932–935 (1984).

65. Ronca, R., Giacomini, A., Rusnati, M. & Presta, M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. *Expert Opin. Ther. Targets* **19**, 1361–1377 (2015).

66. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. *Nat. Rev. Cancer* **10**, 116–129 (2010).

67. Kandel, J. et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. *Cell* **66**, 1095–1104 (1991).

68. Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M. & Christofori, G. Fibroblast growth factors are required for efficient tumor angiogenesis. *Cancer Res.* **60**, 7163–7169 (2000).

69. Giavazzi, R. et al. Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. *Am. J. Pathol.* **162**, 1913–1926 (2003).

70. Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. *Cancer Cell* **8**, 299–309 (2005).

71. Incio, J. et al. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. *Sci. Transl. Med.* **10**, eaag0945 (2018).

72. Abramsson, A., Lindblom, P. & Betsholtz, C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. *J. Clin. Invest.* **112**, 1142–1151 (2003).

73. Guo, P. et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. *Am. J. Pathol.* **162**, 1083–1093 (2003).

74. Xue, Y. et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. *Nat. Med.* **18**, 100–110 (2011).

75. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. *N. Engl. J. Med.* **364**, 501–513 (2011).

76. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. *N. Engl. J. Med.* **356**, 125–134 (2007).

77. Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin-TIE pathway. *Nat. Rev. Drug Discov.* **16**, 635–661 (2017).

78. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. *Science* **284**, 1994–1998 (1999).

79. Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. *Cancer Cell* **19**, 512–526 (2011).

80. Falcón, B. L. et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. *Am. J. Pathol.* **175**, 2159–2170 (2009).

81. Hashizume, H. et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. *Cancer Res.* **70**, 2213–2223 (2010).

82. Daly, C. et al. Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. *Cancer Res.* **73**, 108–118 (2013).

83. Rigamonti, N. et al. Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. *Cell Rep.* **8**, 696–706 (2014).

84. Scholz, A. et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naïve and bevacizumab-resistant glioblastoma. *EMBO Mol. Med.* **8**, 39–57 (2016).

85. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. *Sci. Transl. Med.* **9**, eaak9670 (2017).

86. Rodriguez-Manzaneque, J. C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. *Proc. Natl Acad. Sci. USA* **98**, 12485–12490 (2001).

87. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. *Cell* **88**, 277–285 (1997).

88. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. *Cell* **79**, 315–328 (1994).

89. Singh, R. K. et al. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. *Proc. Natl Acad. Sci. USA* **92**, 4562–4566 (1995).

90. von Marschall, Z. et al. Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. *J. Natl Cancer Inst.* **95**, 437–448 (2003).

91. Dinney, C. P. et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon- α administration. *Cancer Res.* **58**, 808–814 (1998).

92. Solorzano, C. C. et al. Administration of optimal biological dose and schedule of interferon α combined with gemcitabine induces apoptosis in tumor-associated endothelial cells and reduces growth of human pancreatic carcinoma implanted orthotopically in nude mice. *Clin. Cancer Res.* **9**, 1858–1867 (2003).

93. De Palma, M. et al. Tumor-targeted interferon- α delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. *Cancer Cell* **14**, 299–311 (2008).

94. Escudier, B. et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. *Lancet* **370**, 2103–2111 (2007).

95. Kammertoens, T. et al. Tumour ischaemia by interferon- γ resembles physiological blood vessel regression. *Nature* **545**, 98–102 (2017).

96. Baer, C. et al. Suppression of microRNA activity amplifies IFN- γ -induced macrophage activation and promotes anti-tumour immunity. *Nat. Cell Biol.* **18**, 790–802 (2016).

97. Schoenfeld, J. et al. Active immunotherapy induces antibody responses that target tumor angiogenesis. *Cancer Res.* **70**, 10150–10160 (2010).

98. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. *Nat. Rev. Clin. Oncol.* **15**, 310–324 (2018).

99. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. *Cancer Cell* **21**, 309–322 (2012).

100. Beltraminelli, T. & De Palma, M. Biology and therapeutic targeting of tumour-associated macrophages. *J. Pathol.* **250**, 573–592 (2020).

101. Cassetta, L. & Pollard, J. W. A timeline of tumour-associated macrophage biology. *Nat. Rev. Cancer* **23**, 238–257 (2023).

102. Casazza, A. et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. *Cancer Cell* **24**, 695–709 (2013).

103. Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. *Cell Metab.* **24**, 701–715 (2016).

104. Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. *Cancer Res.* **66**, 11238–11246 (2006).

105. Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. *Cancer Cell* **5**, 443–453 (2004).

106. Giraudo, E., Inoue, M. & Hanahan, D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. *J. Clin. Invest.* **114**, 623–633 (2004).

107. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. *Nat. Med.* **9**, 789–795 (2003).

108. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. *Cancer Cell* **8**, 211–226 (2005).

109. Opzometer, J. W. et al. Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression. *Sci. Adv.* **7**, eabg9518 (2021).

110. Teuwen, L.-A. et al. Tumor vessel co-option probed by single-cell analysis. *Cell Rep.* **35**, 109253 (2021).

111. Pucci, F. et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood 'resident' monocytes, and embryonic macrophages suggests common functions and developmental relationships. *Blood* **114**, 901–914 (2009).

112. Lapenna, A., De Palma, M. & Lewis, C. E. Perivascular macrophages in health and disease. *Nat. Rev. Immunol.* **18**, 689–702 (2018).

113. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. *Cancer Res.* **75**, 3479–3491 (2015).

114. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by Tie2^{hi} macrophage-derived VEGFA. *Cancer Discov.* **5**, 932–943 (2015).

115. Ma, R.-Y., Black, A. & Qian, B.-Z. Macrophage diversity in cancer revisited in the era of single-cell omics. *Trends Immunol.* **43**, 546–563 (2022).

116. Siwicki, M. & Pittet, M. J. Versatile neutrophil functions in cancer. *Semin. Immunol.* **57**, 101538 (2021).

117. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. *Genes Dev.* **13**, 1382–1397 (1999).

118. Eissmann, M. F. et al. IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. *Nat. Commun.* **10**, 2735 (2019).

119. Gaudry, M. et al. Intracellular pool of vascular endothelial growth factor in human neutrophils. *Blood* **90**, 4153–4161 (1997).

120. Ardi, V. C. et al. Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway. *J. Biol. Chem.* **284**, 25854–25866 (2009).

121. Alshetawi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. *Sci. Immunol.* **5**, eaay6017 (2020).

122. Jablonska, J., Leschner, S., Westphal, K., Lienenklau, S. & Weiss, S. Neutrophils responsive to endogenous IFN- β regulate tumor angiogenesis and growth in a mouse tumor model. *J. Clin. Invest.* **120**, 1151–1164 (2010).

123. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. *Proc. Natl Acad. Sci. USA* **103**, 12493–12498 (2006).

124. Shojaei, F., Singh, M., Thompson, J. D. & Ferrara, N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. *Proc. Natl Acad. Sci. USA* **105**, 2640–2645 (2008).

125. Gordon-Weeks, A. N. et al. Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice. *Hepatology* **65**, 1920–1935 (2017).

126. Deryugina, E. I. et al. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. *Neoplasia* **16**, 771–788 (2014).

127. Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. *Science* **383**, eadf6493 (2024).

128. Pahler, J. C. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. *Neoplasia* **10**, 329–340 (2008).

129. Rivera, L. B. et al. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. *Cell Rep.* **11**, 577–591 (2015).

130. Fridlander, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF- β : 'N1' versus 'N2' TAN. *Cancer Cell* **16**, 183–194 (2009).

131. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF^{high} neutrophils. *Science* **358**, eaal5081 (2017).

132. Kalafati, L. et al. Innate immune training of granulopoiesis promotes anti-tumor activity. *Cell* **183**, 771–785 (2020).

133. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T_{reg} cells. *Nature* **475**, 226–230 (2011).

134. Gotthardt, D. et al. STAT5 is a key regulator in NK cells and acts as a molecular switch from tumor surveillance to tumor promotion. *Cancer Discov.* **6**, 414–429 (2016).

135. Kalluri, R. The biology and function of fibroblasts in cancer. *Nat. Rev. Cancer* **16**, 582–598 (2016).

136. Nee, K. et al. Preneoplastic stromal cells promote BRCA1-mediated breast tumorigenesis. *Nat. Genet.* **55**, 595–606 (2023).

137. Kanzaki, R. & Pietras, K. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine. *Cancer Sci.* **111**, 2708–2717 (2020).

138. Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. *Nat. Commun.* **9**, 5150 (2018).

139. Hou, X. et al. PDGF-CC blockade inhibits pathological angiogenesis by acting on multiple cellular and molecular targets. *Proc. Natl. Acad. Sci. USA* **107**, 12216–12221 (2010).

140. Unterleuthner, D. et al. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. *Angiogenesis* **23**, 159–177 (2020).

141. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. *Cell* **121**, 335–348 (2005).

142. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. *Cell Metab.* **18**, 478–489 (2013).

143. Leek, R. D. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. *Cancer Res.* **56**, 4625–4629 (1996).

144. Jain, S. et al. Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects. *J. Clin. Invest.* **133**, e147087 (2023).

145. Folkman, J. Angiogenesis: initiation and control. *Ann. N. Y. Acad. Sci.* **401**, 212–227 (1982).

146. Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. *Nat. Rev. Mol. Cell Biol.* **18**, 477–494 (2017).

147. Zeng, Q. et al. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. *Nat. Rev. Cancer* **23**, 544–564 (2023).

148. Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. *Nat. Rev. Cancer* **22**, 340–355 (2022).

149. Dejana, E., Hirschi, K. K. & Simons, M. The molecular basis of endothelial cell plasticity. *Nat. Commun.* **8**, 14361 (2017).

150. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. *Nat. Rev. Immunol.* **11**, 702–711 (2011).

151. Vella, G., Hua, Y. & Bergers, G. High endothelial venules in cancer: regulation, function, and therapeutic implication. *Cancer Cell* **41**, 527–545 (2023).

152. Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. *Cancer Cell* **37**, 21–36 (2020).

153. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. *Cell* **180**, 764–779 (2020).

154. Vartanian, R. K. & Weidner, N. Correlation of intratumoral endothelial cell proliferation with microvessel density (tumor angiogenesis) and tumor cell proliferation in breast carcinoma. *Am. J. Pathol.* **144**, 1188–1194 (1994).

155. Vermeulen, P. B. et al. Microvessel density, endothelial cell proliferation and tumour cell proliferation in human colorectal adenocarcinomas. *Ann. Oncol.* **6**, 59–64 (1995).

156. Geldhof, V. et al. Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. *Nat. Commun.* **13**, 5511 (2022).

157. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. *Nat. Med.* **24**, 1277–1289 (2018).

158. Hanahan, D. Hallmarks of cancer: new dimensions. *Cancer Discov.* **12**, 31–46 (2022).

159. Wu, Z., Uhl, B., Gires, O. & Reichel, C. A. A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence. *J. Biomed. Sci.* **30**, 21 (2023).

160. Shiau, C. et al. Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution. *Front. Oncol.* **12**, 929950 (2022).

161. Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents—overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. *Nat. Rev. Clin. Oncol.* **18**, 527–540 (2021).

162. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. *Nat. Med.* **14**, 28–36 (2008).

163. Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1⁺ T lymphocyte niches through a feed-forward loop. *Cancer Cell* **40**, 1600–1618 (2022).

164. Bernier-Latmani, J. et al. Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth. *Nat. Cardiovasc. Res.* **1**, 476–490 (2022).

165. Bridgeman, V. L. et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. *J. Pathol.* **241**, 362–374 (2017).

166. Zhang, Y., Wang, S. & Dudley, A. C. Models and molecular mechanisms of blood vessel co-option by cancer cells. *Angiogenesis* **23**, 17–25 (2020).

167. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. *Nat. Cell Biol.* **20**, 966–978 (2018).

168. Cuypers, A., Truong, A.-C. K., Becker, L. M., Saavedra-García, P. & Carmeliet, P. Tumor vessel co-option: the past & the future. *Front. Oncol.* **12**, 965277 (2022).

169. Frentzas, S. et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. *Nat. Med.* **22**, 1294–1302 (2016).

170. Rada, M. et al. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. *Commun. Biol.* **4**, 950 (2021).

171. Yip, R. K. H. et al. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. *Nat. Commun.* **12**, 6920 (2021).

172. Hongu, T. et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. *Nat. Cancer* **3**, 486–504 (2022).

173. Küsters, B. et al. Vascular endothelial growth factor-A₁₆₅ induces progression of melanoma brain metastases without induction of sprouting angiogenesis. *Cancer Res.* **62**, 341–345 (2002).

174. De Palma, M. & Hanahan, D. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. *Mol. Oncol.* **6**, 111–127 (2012).

175. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. *N. Engl. J. Med.* **357**, 2666–2676 (2007).

176. Garon, E. B. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. *Lancet* **384**, 665–673 (2014).

177. Tabernero, J. et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. *Lancet Oncol.* **16**, 499–508 (2015).

178. Van Cutsem, E. et al. Addition of afiblercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. *J. Clin. Oncol.* **30**, 3499–3506 (2012).

179. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. *Nat. Med.* **10**, 145–147 (2004).

180. Van der Veldt, A. A. M. et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. *Cancer Cell* **21**, 82–91 (2012).

181. Tolaney, S. M. et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. *Proc. Natl. Acad. Sci. USA* **112**, 14325–14330 (2015).

182. Ellis, L. M. Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. *Semin. Oncol.* **33**, S1–S7 (2006).

183. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. *Cancer Res.* **64**, 3731–3736 (2004).

184. Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. *Annu. Rev. Physiol.* **81**, 505–534 (2019).

185. Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. *Proc. Natl. Acad. Sci. USA* **109**, 17561–17566 (2012).

186. Lu-Emerson, C. et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. *J. Clin. Oncol.* **33**, 1197–1213 (2015).

187. De Palma, M. & Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. *Cancer Cell* **23**, 277–286 (2013).

188. Maione, F. et al. Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. *J. Clin. Invest.* **122**, 1832–1848 (2012).

189. He, B. et al. Remodeling of metastatic vasculature reduces lung colonization and sensitizes overt metastases to immunotherapy. *Cell Rep.* **30**, 714–724 (2020).

190. Lee, E. et al. An agonistic anti-Tie2 antibody suppresses the normal-to-tumor vascular transition in the glioblastoma invasion zone. *Exp. Mol. Med.* **55**, 470–484 (2023).

191. O'Connor, M. N. et al. LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. *Med* **2**, 1231–1252 (2021).

192. Zhao, Q. et al. Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. *Cancer Res.* **78**, 2370–2382 (2018).

193. Faes, S., Demartines, N. & Dormond, O. Mechanistic target of rapamycin inhibitors in renal cell carcinoma: potential, limitations, and perspectives. *Front. Cell Dev. Biol.* **9**, 636037 (2021).

194. Griffioen, A. W. et al. Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. *Clin. Cancer Res.* **18**, 3961–3971 (2012).

195. Khan, K. A., Wu, F. T., Cruz-Munoz, W. & Kerbel, R. S. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. *EMBO Mol. Med.* **13**, e08253 (2021).

196. Albaín, K. S. et al. Neoadjuvant trebananib plus paclitaxel-based chemotherapy for stage II/III breast cancer in the adaptively randomized I-SPY2 trial—efficacy and biomarker discovery. *Clin. Cancer Res.* **30**, 729–740 (2024).

197. Bendell, J. C. et al. The McCave trial: vanucizumab plus mFOLFOX-6 versus bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal carcinoma (mCRC). *Oncologist* **25**, e451–e459 (2020).

198. Ferreira, C. S. et al. Predictive potential of angiopoietin-2 in a mCRC subpopulation treated with vanucizumab in the McCave trial. *Front. Oncol.* **13**, 1157596 (2023).

199. van Beijnum, J. R., Nowak-Sliwinska, P., Huijbers, E. J. M., Thijssen, V. L. & Griffioen, A. W. The great escape: the hallmarks of resistance to antiangiogenic therapy. *Pharmacol. Rev.* **67**, 441–461 (2015).

200. Xie, L. et al. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. *Proc. Natl Acad. Sci. USA* **108**, 9939–9944 (2011).

201. Kopetz, S. et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. *J. Clin. Oncol.* **28**, 453–459 (2010).

202. Allen, E., Walters, I. B. & Hanahan, D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. *Clin. Cancer Res.* **17**, 5299–5310 (2011).

203. Llovet, J. M. et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. *J. Clin. Oncol.* **31**, 3509–3516 (2013).

204. Goede, V. et al. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. *Br. J. Cancer* **103**, 1407–1414 (2010).

205. Zhu, A. X. et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. *J. Clin. Oncol.* **27**, 3027–3035 (2009).

206. Tabernero, J. et al. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. *Ann. Oncol.* **29**, 602–609 (2018).

207. Chung, A. S. et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. *Nat. Med.* **19**, 1114–1123 (2013).

208. Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. *Cancer Cell* **15**, 21–34 (2009).

209. Mitsuhashi, A. et al. Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. *Nat. Commun.* **6**, 8792 (2015).

210. Keklikoglou, I. et al. Periostin limits tumor response to VEGFA inhibition. *Cell Rep.* **22**, 2530–2540 (2018).

211. Hu, Y.-L. et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. *Cancer Res.* **72**, 1773–1783 (2012).

212. Zhai, B. et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. *Mol. Cancer Ther.* **13**, 1589–1598 (2014).

213. Allen, E. et al. Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. *Cell Rep.* **15**, 1144–1160 (2016).

214. Jiménez-Valerio, G. et al. Resistance to antiangiogenic therapies by metabolic symbiosis in renal cell carcinoma PDX models and patients. *Cell Rep.* **15**, 1134–1143 (2016).

215. Pisarsky, L. et al. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. *Cell Rep.* **15**, 1161–1174 (2016).

216. Sounni, N. E. et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. *Cell Metab.* **20**, 280–294 (2014).

217. Bensaad, K. et al. Fatty acid uptake and lipid storage induced by HIF-1 α contribute to cell growth and survival after hypoxia-reoxygenation. *Cell Rep.* **9**, 349–365 (2014).

218. Iwamoto, H. et al. Cancer lipid metabolism confers antiangiogenic drug resistance. *Cell Metab.* **28**, 104–117 (2018).

219. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. *Cancer Cell* **15**, 220–231 (2009).

220. Ebos, J. M. L. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. *Cancer Cell* **15**, 232–239 (2009).

221. Moserle, L. et al. Kidney cancer PDOXs reveal patient-specific pro-malignant effects of antiangiogenics and its molecular traits. *EMBO Mol. Med.* **12**, e11889 (2020).

222. Kuczynski, E. A. et al. Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. *J. Natl Cancer Inst.* **108**, djw030 (2016).

223. Ebos, J. M. L. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. *Nat. Rev. Clin. Oncol.* **8**, 210–221 (2011).

224. Hardian, R. F. et al. An autopsy case of widespread brain dissemination of glioblastoma unnoticed by magnetic resonance imaging after treatment with bevacizumab. *Surg. Neurol. Int.* **10**, 137 (2019).

225. Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. *J. Clin. Oncol.* **29**, 83–88 (2011).

226. Blagoev, K. B. et al. Sunitinib does not accelerate tumor growth in patients with metastatic renal cell carcinoma. *Cell Rep.* **3**, 277–281 (2013).

227. Sennino, B. et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. *Cancer Discov.* **2**, 270–287 (2012).

228. Zhou, L. et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. *Oncogene* **35**, 2687–2697 (2016).

229. Chandra, A. et al. Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic antiangiogenic therapy resistance. *Cancer Res.* **80**, 1498–1511 (2020).

230. Oliveres, H., Pineda, E. & Maurel, J. MET inhibitors in cancer: pitfalls and challenges. *Expert Opin. Investig. Drugs* **29**, 73–85 (2020).

231. Morad, G., Helmkink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. *Cell* **184**, 5309–5337 (2021); erratum **185**, 576 (2022).

232. Dirkx, A. E. M. et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte–endothelium interactions and infiltration in tumors. *FASEB J.* **20**, 621–630 (2006).

233. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. *N. Engl. J. Med.* **380**, 1116–1127 (2019).

234. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. *N. Engl. J. Med.* **380**, 1103–1115 (2019).

235. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. *Lancet* **393**, 2404–2415 (2019).

236. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. *N. Engl. J. Med.* **378**, 2288–2301 (2018).

237. Makker, V. et al. Lenvatinib plus pembrolizumab in previously treated advanced endometrial cancer: updated efficacy and safety from the randomized phase III study 309/KEYNOTE-775. *J. Clin. Oncol.* **41**, 2904–2910 (2023).

238. Wang, F. et al. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial. *Nat. Med.* **30**, 1035–1043 (2024).

239. Yang, B., Li, Y., Deng, J., Yang, H. & Sun, X. Efficacy and safety of immune checkpoint inhibitors plus recombinant human endostatin therapy as second-line treatment in advanced non-small-cell lung cancer with negative driver gene: a pilot study. *Front. Oncol.* **13**, 1210267 (2023).

240. Kashyap, A. S. et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. *Proc. Natl Acad. Sci. USA* **117**, 541–551 (2020).

241. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. *Sci. Transl. Med.* **9**, eaak9679 (2017).

242. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. *Nature* **544**, 250–254 (2017).

243. Zheng, X. et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. *J. Clin. Invest.* **128**, 2104–2115 (2018).

244. Tichet, M. et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8⁺ T cells and reprogramming macrophages. *Immunity* **56**, 162–179 (2023).

245. Di Tacchio, M. et al. Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. *Cancer Immunol. Res.* **7**, 1910–1927 (2019).

246. Li, Q. et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade. *Clin. Cancer Res.* **26**, 1712–1724 (2020).

247. Park, H.-R. et al. Angiopoietin-2-dependent spatial vascular destabilization promotes T-cell exclusion and limits immunotherapy in melanoma. *Cancer Res.* **83**, 1968–1983 (2023).

248. Meder, L. et al. Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. *Cancer Res.* **78**, 4270–4281 (2018).

249. Chryplewicz, A. et al. Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity. *Cancer Cell* **40**, 1111–1127 (2022).

250. Lee, E. et al. Angiopoietin-2 blockade suppresses growth of liver metastases from pancreatic neuroendocrine tumors by promoting T cell recruitment. *J. Clin. Invest.* **133**, e167994 (2023).

251. Ragusa, S. et al. Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. *J. Clin. Invest.* **130**, 1199–1216 (2020).

252. Elia, A. R. et al. Targeting tumor vasculature with TNF leads effector T cells to the tumor and enhances therapeutic efficacy of immune checkpoint blockers in combination with adoptive cell therapy. *Clin. Cancer Res.* **24**, 2171–2181 (2018).

253. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. *Nat. Immunol.* **18**, 1207–1217 (2017).

254. Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. *Nature* **453**, 410–414 (2008).

255. Cartier, A., Leigh, T., Liu, C. H. & Hla, T. Endothelial sphingosine 1-phosphate receptors promote vascular normalization and antitumor therapy. *Proc. Natl Acad. Sci. USA* **117**, 3157–3166 (2020).

256. Kim, D. J. et al. Priming a vascular-selective cytokine response permits CD8⁺ T-cell entry into tumors. *Nat. Commun.* **14**, 2122 (2023).

257. Kabir, A. U. et al. Dual role of endothelial *Myct1* in tumor angiogenesis and tumor immunity. *Sci. Transl. Med.* **13**, eabb6731 (2021).

258. Sun, Y. et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. *Sci. Transl. Med.* **13**, eabc8922 (2021).

259. Asrir, A. et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. *Cancer Cell* **40**, 318–334 (2022).

260. Motzer, R. J. et al. Final overall survival and molecular analysis in IMmotion151, a phase 3 trial comparing atezolizumab plus bevacizumab vs sunitinib in patients with previously untreated metastatic renal cell carcinoma. *JAMA Oncol.* **8**, 275–280 (2022).

261. West, H. J. et al. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with *STK11*, *KEAP1*, or *TP53* mutations: subgroup results from the phase III IMpower150 trial. *J. Immunother. Cancer* **10**, e003027 (2022).

262. Bilen, M. A. et al. Association of neutrophil-to-lymphocyte ratio with efficacy of first-line avelumab plus axitinib vs. sunitinib in patients with advanced renal cell carcinoma enrolled in the phase 3 JAVELIN Renal 101 trial. *Clin. Cancer Res.* **28**, 738–747 (2022).

263. Subramanian, M., Kabir, A. U., Barisas, D., Krchma, K. & Choi, K. Conserved angio-immune subtypes of the tumor microenvironment predict response to immune checkpoint blockade therapy. *Cell Rep. Med.* **4**, 100896 (2023).

264. Choueiri, T. K. et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. *Ann. Oncol.* **31**, 1030–1039 (2020).

265. Martinez-Usatorre, A. et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. *Sci. Transl. Med.* **13**, eabd1616 (2021).

266. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. *Proc. Natl Acad. Sci. USA* **95**, 9349–9354 (1998).

267. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. *Clin. Cancer Res.* **5**, 2963–2970 (1999).

268. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8⁺ T cells in tumors. *J. Exp. Med.* **212**, 139–148 (2015).

269. Kim, C. G. et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. *Sci. Immunol.* **4**, eaay0555 (2019).

270. Terme, M. et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. *Cancer Res.* **73**, 539–549 (2013).

Acknowledgements

We note and regret that many pertinent studies were not cited owing to the limited number of references allowed for this article format. We thank K. Ouchen for redrawing our vignettes. M.D.P. acknowledges grant support from the European Research Council (ERC CoG EVOLVE-725051), the Swiss National Science Foundation (SNSF 310030-188868), the Swiss Cancer League (KLS-4505-08-2018) and Carigest SA. D.H. acknowledges grant support from the Ludwig Institute for Cancer Research.

Competing interests

None of the research results reviewed and discussed herein reflect bona fide competing interests. In the interest of full disclosure, M.D.P. has received sponsored research grants from Hoffmann La-Roche, Deciphera Pharmaceuticals, MedImmune and EVIR Therapeutics, in part to investigate angiogenesis inhibitors and immunotherapy combinations; serves on the scientific advisory boards of EVIR Therapeutics, Montis Biosciences, Macomics, Deciphera Pharmaceuticals, Light Chain Bioscience/Novimmune and Genenta;

and is an inventor on patents on engineered immune cells filed by the Swiss Federal Institute of Technology in Lausanne (EPFL). D.H. has received sponsored research grants from Hoffmann La-Roche and Bristol Myers Squibb; serves on the scientific advisory boards of Pfizer Oncology, Opna Bio, 4D Molecular Therapeutics and Cellestia; and is a founder of Opna Bio, which has licensed an EPFL patent describing the RNA-binding protein FMRP as a new cancer target.

Additional information

Correspondence should be addressed to Michele De Palma or Douglas Hanahan.

Peer review information *Nature Cancer* thanks Mihaela Skobe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature America, Inc. 2024